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ABSTRACT 
 
The goal of all studies relating bone density and structure to bone strength is to 
predict fracture risk in a specific patient using clinically available data. The aim of 
the present study was to test a new method to describe the mechanical properties 
of bone using clinically available data and to compare it with routine procedures. 
The study was performed on 50 L3 vertebrae taken from males aged 22 to 81 
years. The samples were examined with dual-energy X-ray absorptiometry and 
quantitative CT. An extensive analysis was carried out for 2-dimensional (2D) and 
3-dimensional(3D) CT images. Also, a 2D image histogram analysis was 
performed. The parameters(mean – XC1/XC2, standard deviation – SD1/SD2, and 
area – X1/X2)characterizing the organic matrix and bone material were calculated 
by fitting two Gaussian functions. The compression test was performed to 
determine ultimate stress (max), ultimate strain, elastic modulus (E), and the ratio 
of work to fracture and the volume of the vertebra. The study carried out made it 
possible to determine several dozens of parameters that describe the geometry, 
architecture, density, and mechanical properties of the vertebral body. It was 
found that E and max was best described by the parameter related to trabecular 
bone density (XC2) obtained from the histogram analysis. The adjusted coefficient 
of determination (R2) is equal to 0.688 and 0.836 for E and max, respectively. For 
volumetric/areal bone mineral density (vBMD/aBMD), R2 is 0.619/0.159 for E 
wile for max equals to 0.771/0.316. It is also possible to correct the vBMD using 
histogram parameters. The R2 values for E and max rise to 0.673/0.825 after the 
correction. The superiority of a new method of E and max assessment using 
clinically available CT data was confirmed. The proposed method does not require 
calibration and predicts the mechanical parameters of the vertebrae more 
precisely than vBMD/aBMD. In addition, it can be implemented in the 
opportunistic analysis of CT data. 
 
Key words: Human vertebra, CT examination, Image histogram analysis, 
prediction of mechanical properties, opportunistic screening. 
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R2, Coefficient of determination; RGL, Relative GL; ROI, Region of interest; SD, Standard deviation; U/V, Work to 
fracture/volume of the vertebral body; vBMD, Volumetric BMD; Xi, Normalized volume fraction; XCi, Parameter linearly 
related to density; max, Ultimate strain; max, Ultimate stress. 
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INTRODUCTION 
 
Bone fractures represent a significant cause of disability 
and loss of quality of life among the elderly population. 
Therefore, proper evaluation of bone mechanical 
parameters and determination of risk of fracture (FR) are 
an important issue (Kanis et al., 2019; Tarantino et al., 
2017). Direct measurement of bone mechanical properties 
is not possible in clinical practice; the mechanical strength 
of bone must be estimated indirectly. The standard 
diagnostic approach, unchanged for several decades, 
consists of determining the areal bone mineral density 
(aBMD) and comparing the results with the values of the 
young population (T-score). 

Since aBMD-based test can only provide a rough 
understanding of how much weaker bones have become, 
numerous attempts have been made to develop more 
accurate diagnostic methods. Trials have been carried out 
to replace or supplement aBMD determinations with 
measurements of the geometry, microarchitecture, and 
volumetric BMD (vBMD) of bones using quantitative 
computed tomography (QCT), peripheral QCT, high-
resolution magnetic resonance imaging, micro-CT, or a 
combination of these methods (Leslie et al., 2018; 
Nethander et al., 2020; Shepherd et al., 2015; Silva et al., 
2015; Lopez Picazo et al., 2019; Soldati et al., 2021; 
Hutchinson et al., 2017; Krug et al., 2010). Another 
approach (Lopez et al., 2012; Dall’Ara et al., 2012) is based 
on bone strength calculations using the finite element 
method (FE). To perform the FE simulations, both micro- 
and macro-mechanical models are constructed using CT 
data. Recently, radiomic features of CT images and artificial 
intelligence-based image analyses have also been used to 
differentiate between normal and pathologically altered 
bones (Xie et al., 2022; Yan et al., 2023). 

Based on the authors' knowledge, none of the diagnostic 
approaches described above have been widely accepted in 
clinical practice. The question arises whether it is possible 
to determine the mechanical parameters of the bones more 
precisely than the methods currently used based on 
clinically available CT data. It is also important to be able to 
use CT examinations for bone diagnostics, which were 
performed to solve other diagnostic problems 
(opportunistic analysis). 

The purpose of this study is to test a new method to 
describe the mechanical properties of bones based on 
clinically available CT data. The usefulness of the method 
for opportunistic CT data analysis is also discussed. 
 
 
MATERIALS AND METHODS 
 
The study comprises a reanalysis of preexisting data 
acquired in previous experiments (Tatoń et al., 2012; Tatoń 
et al., 2013 a, b; Tatoń et al., 2014). Approval for this 
reanalysis was not necessary due to the retrospective and 

de-identified nature of the data. For the primary 
investigation, 50 cadaveric L3 vertebrae obtained from 
males aged 22 to 81 years were used. The material tested 
was limited to male vertebra samples to exclude gender-
specific impacts on BMD (Alswat, 2017). The deaths 
resulted from various causes. The main causes were 
cardiogenic diseases and cerebrovascular attacks. All 
cadavers were included without bone disease screening 
because a complete medical history was not available for all 
subjects.  

The following is a brief description of the experiment 
originally performed. Immediately after removal, the 
samples were placed in the methacrylate body phantom 
filled with 0.9% NaCl solution to stimulate physiological 
conditions. The samples were examined with dual-energy 
X-ray absorptiometry (DXA) using a Lunar DPX-IQ 
densitometer (Lunar, Madison, USA), following standard 
procedures applied for humans. A Siemens Somatom 
Sensation 10 CT unit (Siemens, Erlangen, Germany) was 
used for CT examinations (120 kV, 120 mAs, slice thickness: 
0.6 mm). A 7575 mm2 region of interest (ROI) and a matrix 
of 512512 resulted in a pixel size of 146146 μm2 in the 
plane of the scan. CT data was also used to determine the 
BMD of the trabecular bone region (vBMD) within the 
vertebral bodies. The Siemens Osteo-CT procedure 
(Siemens, Erlangen, Germany) was applied for the 
determination of vBMD. 

Two-dimensional (2D) CT images were applied to 
perform a quantitative characterization of the trabecular 
bone architecture within ROIT (Figure 1). An in-house code 
was developed to perform the calculations. Based on our 
previous results (Tabor and Rokita, 2000; Kubik et al., 
2002; Tabor, 2009), the architecture description was 
limited to one parameter (bone volume/total bone volume - 
BV/TV), although a total of ~30 quantities were tested.  

Finally, DICOM data acquired in CT examinations were 
reconstructed in 3 dimensions (3D), using software 
developed in our laboratory. 3D images were used to 
measure the linear, areal, and volumetric dimensions of 
vertebral bodies (Tatoń et al., 2013a). Subsequently, 3D 
images were applied to identify vertebral fractures 
according to the method of Genant et al. (1993). 

After CT scans, all specimens were subjected to axial 
compression to failure on an Instron 5566 testing machine 
(Instron, High Wycombe, UK)(Tatoń et al., 2013b; Tatoń al., 
2014). Briefly, after preconditioning, each sample was 
compressed to failure at a strain rate of 5 mm/min. The 
description of the parameters determined is given in 
Appendix 1. 

As the new step in 2D image analysis (Figure 1), the grey 
level (GL) histogram was constructed for ROIT (GLT). The 
histogram was normalized using the average GL within 
ROIIS(<GLC>) and the relative grey level histogram (RGL = 
GLT/<GLC>) was computed. ROIT and ROIIS were manually  



 

Medicine and Medical Sciences; Rokita et al.     003 
 
 
 

 
 

Figure 1: Representative 2D CT image of human vertebral cross sections. The regions of interest 
used for the calculation of trabecular bone parameters (ROIT) and for normalization of the ROIT 
histogram (ROIIS) are marked. 

 
 
selected by placing an ellipse and a triangle in the body and 
the spinous process of the vertebra, respectively. 
Thereafter, all RGL histograms (~40 sections for each 
vertebra) were pooled together and the global histogram 
for the vertebral body was prepared. The global histogram 
was normalized (area = 1) and the average grey level was 
calculated (<RGL>). Finally, two Gaussian functions were 
fitted (Figure 2). By applying this method, the global 
histogram was decomposed into two different classes, 
hereinafter referred to as the organic matrixand bone 
material (Appendix 2). Five parameters (mean – XC1/XC2, 
standard deviation – SD1/SD2, area – X1/X2) were obtained. 
The indices ’1’ and ’2’ mark the organic matrix and bone 
material, respectively. It should be emphasized that due to 
the normalization of the histogram, X1+ X2= 1. Therefore, 
the number of independent parameters is five. 

It should be noted that ROIT of a 2D image (Figure 1) 
contains ~2104 pixels. Therefore, the global histogram for 
a vertebral body (Figure 2) comprises several hundred 
thousand points. The histogram skewness is positive in all 
cases and ranges from 0.26 to 1.19. Therefore, two 
Gaussian distributions were fitted to reproduce the 
experimental data. Unambiguously, fitting the two Gaussian 
curves provides an excellent reproduction of the 
experimental data (R2> 0.999). 

Results are presented as parameter ranges, and as 
meanSD. Relationships between parameters and age were 
investigated using the Pearson correlation coefficient (r) 
and its significance level(p). The statistical significance of 
the differences in the correlation coefficients was tested 
using the procedure proposed by Steiger (1980). The 
Student t-test was applied to compare mean values. 
Different regression models (linear – ax +b, parabolic – 
ax2+bx+c, logistic – a/(1 + bexp(-cx)), power – axb,) were 
constructed for the selection of variables explaining 
mechanical tests. Single or two predictor models were 
tested. The best model was selected using the adjusted 
coefficient of determination value(R2), as well as the AIC 
(Akaike Information Criterion) and BIC (Bayesian 
Information Criterion) tests. OriginPro 2020 software 
(Northampton, Massachusetts, USA) was used to perform 
statistical analysis. 
 
 

RESULTS AND DISCUSSION 
 
The main aim of the studies was to improve description of 
the mechanical properties of the vertebra (FR prediction) 
based on the available clinical data. The conducted research 
allowed   to    determine    several    dozens   of    parameters  
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Figure 2: Example of the normalized global histogram of the relative grey level distribution for a 
vertebral body. X1 and X2 are the areas and XC1 and XC2 mark the positions of the maxima of 2 
Gaussian functions. The black dots represent experimental points (every second point is shown). The 
sum of 2 Gaussian functions (solid line) perfectly reproduces the experimental points (R2 = 0.9997). 

 
 
describing the geometry, architecture, density, and 
mechanical properties of the vertebral body. Therefore, it is 
necessary to adopt a criterion that allows the initial 
selection of experimental data. 

Furthermore, it is well known that FR depends on 
pathological changes and age-related physiological 
alterations (Demontiero et al., 2012; Boskey and Coleman, 
2010). In the study, it is assumed that the natural ageing 
process is observed in the absence of fractures, since the 
bone fracture changes the parameters values in a way that 
is impossible to quantify. As a result, it was decided to 
determine the relationship between mechanical parameters 
and clinical data only for unbroken vertebrae. According to 
the Genant classification (1993), vertebrae with mild 
(grade 1) or larger deformities were considered as 
fractured. It should be noted that Genant approach is based 
on both visual classification by two radiologists and 
quantitative morphometric measurements. The visual 
analysis of the 2D images showed that for some subjects, 
the images differ significantly from the standard cases 

(Figure 3A and B). For example, in Figure 3C the difference 
is clearly visible even without quantitative analysis. The 
vertebra with severe degenerative changes (e.g. Fig. 3C) 
was not included in the data analysis. In the group of 50 
cases studied, 18 did meet the selection criterions. The use 
of stringent criteria limited the size of the study group but 
ensures that the group for which there are only 
physiological changes depending on age is analyzed. 

Moreover, it is well known that the mechanical strength 
of bones decreases with age (Demontiero et al., 2012; 
Boskey and Coleman, 2010). To describe the mechanical 
parameters by the available clinical quantities, one should 
use those clinical data that change with age. Therefore, in 
studies, the correlation criterion with age has been adopted 
for the selection of parameters. When selecting parameters, 
one should also remember the multicollinearity effect. 

Table 1 shows the ranges of selected parameters and 
their correlations with age. Among the parameters that 
characterize the mechanical properties of vertebrae, max, E 
and U/V correlate with age. For ultimate strain (max), the  
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Figure 3: 2D CT images of the ROIT regions for human L3 vertebral 
bodies collected from 25 (A), 66 (B), and 24 (C) year-old subjects. 

 
 
correlation is not observed (r = -0.38, p= 0.115). It should 
be noted that there is no commonly accepted method of 
assessing fracture risk (Diacinti and Guglielmi, 2019; Lentle 
et al., 2019). In our study, it was assumed that the most 
important parameter characterizing the FR is max, as it 
denotes when fractures really do occur. With E in addition, 
it is possible to estimate the values of U/V and max  

 
(Appendix 1). The selection of parameters matches the 
widely accepted opinion that strength (max) and stiffness 
(E) are the best quantities to define the "health" of bone. 
The values of max and E (Table 1) are in line with those 
previously published (Karim et al., 2013; Boskey and 
Imbert, 2017). Furthermore, there are significant 
differences for young ( 55 y) and old (> 55 y) individuals 
in the case of average max (11.4  2.0 vs 6.81  2.59 MPa, 
p=0.0005) and E (326  36 vs 202  70 MPa, p=0.0002). 

Regarding the vertebral geometry, data analysis confirms 
a general regularity. The L3 vertebrae show a trend 
towards a decrease in all height values (H) and an increase 
in axial cross-sectional areas(A) with age, while the volume 
(V) of the body does not change with age (r = 0.22, p= 
0.382). The description of the influence of the geometry of 
the lumbar vertebra on the mechanical parameters was 
previously carried out (Tatoń et al., 2013a), this problem 
will not be discussed in detail in this study. Briefly, 
differentiation of broken/unbroken vertebrae may be 
accomplished by applying vertebral geometry. It does not 
provide information on the mechanical parameters of the 
unbroken vertebrae. 

Most of the parameters that characterize the minerality 
of avertebral body correlate with age. This applies both to 3 
parameters obtained from histogram analysis (X2, XC2, SD2) 
and to the parameters commonly used in the description of 
trabecular bone density (vBMD) or to the parameter 
related to bone density (BV/TV). Unlike bone material, the 
parameters that characterize the organic matrix (XC1, SD1) 
vary to a very narrow extent (0.29  0.35 and 0.08 0.12, 
respectively) and do not correlate with age (r = -0.46, p= 
0.057 and r = -0.27 p= 0.271, respectively). XC1 and SD1 are 
also not correlated (r = 0.006, p = 0.982). It should be 
emphasized that aBMD does not correlate with age in cases 
without fracture. This parameter will be further considered, 
as it is the most widely used to assess fracture risk in 
clinical practice. 

As the first step in describing the mechanical parameters 
by CT data, a linear regression model was used. The 
correlations between mechanical parameters and selected 
vertebral body parameters that are clinically available are 
given in Table 2. Table 2 does not contain U/V (Appendix 1) 
while the parameter vBMD/X2 (Appendix 2) was also 
included. The values given in Table 2 confirm the positive 
proportionality of different measures of the bone mineral 
density with bone strength and stiffness, what has been 
repeatedly demonstrated over many years. It should be 
noted that the obtained results prove that XC2 and vBMD/X2 
are the best predictors of the mechanical parameters of the 
vertebrae. 

In the next step, to describe the relationship between 
mechanical parameters and predictor variables whist 
taking away the effect of age on the relationship, the partial 
correlations were calculated. The data in Table 3 confirm 
that XC2 and vBMD/X2 are the best predictors of the 
mechanical parameters. 
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Table 1: The ranges of values of the parameters describing selected properties the of L3 

vertebral body. The correlationsof parameters with age (r) and pvalue are 

given.Abbreviations: σmax – ultimate stress (MPa), E – elastic modulus (MPa), U/V – the 

ratio of the work to fracture and the vertebra volume (MPa), A – the area of the axial 

cross section at the narrowest site of the of the vertebral body (cm2), H – the average 

height of the vertebral body (cm), BV/TV – bone volume/total volume, vBMD – 

volumetric bone mineral density (g/cm3), aBMD – areal bone mineral density (g/cm2), X2, 

XC2, SD2 – area, mean and standard deviation of the Gaussian function representing the 

bone material.  

 

Parameter Range r p 

σmax 3.83 ÷ 13.8 -0.74 <0.001 

E  141 ÷ 394 -0.77 <0.001 

U/V  0.11 ÷ 0.41 -0.64 0.005 

A  10.9÷18.2 0.75 <0.001 

H  1.97÷3.05 -0.74 <0.001 

BV/TV 0.09 ÷ 0.30 -0.71 0.001 

vBMD  0.051 ÷ 0.169 -0.65 0.004 

aBMD  0.74 ÷ 1.53 -0.40 0.110 

X2 0.39 ÷ 0.72 -0.55 0.018 

XC2 0.31 ÷ 0.62 -0.69 0.001 

SD2 0.12 ÷ 0.17 -0.75 <0.001 

 
 

Table 2: Linear regression model fitting results. Correlations between 2 mechanical parameters and parameters characterizing 
the density of the L3 vertebral body. The values of the correlation coefficient and pare given. Abbreviations: E – elastic modulus, 
σmax – ultimate stress, BV/TV – bone volume/total volume, vBMD – volumetric bone mineral density, aBMD – areal bone mineral 
density, X2, XC2, SD2 – area, mean and standard deviation of the Gaussian function representing bone material.  

 

Parameter E max BV/TV vBMD aBMD X2 XC2 SD2 

max 0.89 

<0.001 

1       

         

BV/TV 0.75 

<0.001 

0.85 

<0.001 

1      

         

vBMD  0.80 

<0.001 

0.89 

<0.001 

0.79 

<0.001 

1     

         

aBMD  0.46 

0.057 

0.60 

0.009 

0.52 

0.028 

0.80 

<0.001 

1    

         

X2 0.56 

0.015 

0.65 

0.004 

0.67 

0.002 

0.85 

<0.001 

0.74 

<0.001 

1   

         

XC2 0.84 

<0.001 

0.92 

<0.001 

0.78 

<0.001 

0.90 

<0.001 

0.66 

0.003 

0.65 

0.004 

1  

         

SD2 0.79 

<0.001 

0.82 

<0.001 

0.77 

<0.001 

0.77 

<0.001 

0.59 

0.009 

0.65 

0.004 

0.74 

0.001 

1 

         

vBMD/X2 0.83 

<0.001 

0.91 

<0.001 

0.74 

0.001 

0.88 

<0.001 

0.67 

0.002 

0.59 

0.011 

0.92 

<0.001 

0.73 

0.001 
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Table 3: Partial correlations (effect of age has been removed) between mechanical parameters and parameters characterizing the density 
of the L3 vertebral body. The values of the partial correlation coefficient and pare given. Abbreviations: E – elastic modulus, σmax – ultimate 
stress, BV/TV – bone volume/total volume, vBMD – volumetric bone mineral density, aBMD – areal bone mineral density, X2, XC2, SD2 – 
area, mean and standard deviation of the Gaussian function representing bone material.  

 

Parameter E max BV/TV vBMD aBMD X2 XC2 SD2 

max 0.75 

0.001 

1       

         

BV/TV 0.44 

0.077 

0.69 

0.001 

1      

         

vBMD  0.62 

0.008 

0.79 

<0.001 

0.61 

0.010 

1     

         

aBMD  0.26 

0.315 

0.49 

0.045 

0.37 

0.146 

0.77 

<0.001 

1    

         

X2 0.26 

0.311 

0.43 

0.085 

0.48 

0.049 

0.78 

0.0002 

0.68 

0.003 

1   

         

XC2 0.67 

0.004 

0.84 

<0.001 

0.56 

0.019 

0.82 

<0.001 

0.59 

0.013 

0.68 

0.003 

1  

         

SD2 0.49 

0.046 

0.60 

0.010 

0.51 

0.035 

0.57 

0.017 

0.49 

0.046 

0.42 

0.092 

0.44 

0.074 

1 

         

vBMD/X2 0.71 

0.001 

0.86 

<0.001 

0.54 

0.024 

0.87 

<0.001 

0.59 

0.012 

0.38 

0.138 

0.86 

<0.001 

0.51 

0.037 

 
 
 
The obtained results clearly confirm that aBMD does not 

offer a good assessment of the mechanical parameters 
(Tables 2 and 3). In contrast to aBMD, vBMD provides 
better prediction of the mechanical parameters. 
Determining vBMD requires a CT scan, which significantly 
limits the use of this parameter in clinical practice. It should 
also be noted that the prediction of osteoporosis using 
aBMD and vBMD does not overlap. According to the criteria 
of aBMD for the diagnosis of osteoporosis (T-score < - 2.5) 
(Kanis et al., 2019), samples subjected to studies can be 
classified as normal/osteopenic (15 cases) and 
osteoporotic (3 cases). Using the vBMD values (< 0.080 
g/cm3) for classification (American College of Radiology, 
2013), we get 13 and 5 cases, respectively. 

In many studies, the quantities that characterize the 
vertebral microstructure are also calculated based on 
clinical CT data (Yamada et al., 2019; Akhter and Recker, 
2021). This approach is in line with the commonly accepted 
opinion that to fully characterize the mechanical properties 
of vertebrae, it is necessary to supplement density 
measurements with a quantitative description of the 
trabecular architecture (Karim et al., 2013). However, in 
clinical practice, the parameters that characterize the 

architecture of the trabecular bone are not used. The basic 
problem of bone microstructure studies is the problem of 
the resolving power of CT images obtained in clinical trials 
(Kim et al., 2004; Tatoń et al., 2012; Liu et al., 2020). 
Although modern CT scanners achieve an isotropic 
resolution of ~0.5 mm (Engelke, 2017), for standard 
clinical examination, a minimum in-plane resolution of the 
order of 1 mm and a slice thickness > 1 mm are used. 
Hence, given typical dimensions of trabeculae, the image 
resolution seems to be the borderline for a quantitative 
determination of trabecular architecture. 

The common feature of all methods currently tested to 
replace or supplement density measurements is that 
instead of directly measuring microstructural parameters, 
there is a tendency to use textural descriptors to 
characterize the trabecular architecture without requiring 
stringent segmentation of the individual trabecula 
(Checefsky et al., 2016; Gebre et al., 2021; Valentinitschl et 
al., 2019). Similarly, texture analysis can be applied to DXA 
images by computing the trabecular bone score (TBS)(Silva 
et al., 2015). More computer-advanced studies of trabecular 
architecture measurements from DXA-derived 3D models 
have been published (Lopez Picazo et al., 2019). Recently,  
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Figure 4: Elastic modulus (E - MPa) and ultimate stress (max - MPa) vs bone material density 
measure (XC2) extracted from histogram analysis. Solid line represents the linear regression model 
(R2 = 0.688 and 0.836 for E and max, respectively). 

 
 
attempts had also been made to take advantage of radiomic 
features for FR assessment (Xie et al., 2022; Xue et al., 
2022). It should be noted that the texture analysis is based 
on the quantitative description of image grey-level 
variations without biophysical background. In our study, 
we proposed a new, very simple method instead of density 
determination or texture analysis. 

In our approach, the quantitative description of 
trabecular bone density is based on image histogram 
analysis. The proposed histogram analysis allows for the 
separation of the organic matrix and bone material. The 
determined parameter (XC2) is related to bone density and 
allows the best prediction of the mechanical parameters of 

all thequantities tested. Figure 4 shows the modulus of 
elasticity (E) and ultimate stress (max) versus XC2. The very 
good prediction of E(R2 = 0.688) and max(R2 = 0.836) 
values is clearly visible. It should be noted that using a 
standard procedure, vBMD can also be determined from the 
histogram. However, we need to apply the calibration 
procedure after <RGL> calculation. Consistently, 
replacement of vBMD with vBMD/X2 (Appendix 2) 
improves the correlations with mechanical parameters. 
Considering the opportunistic determinations of 
vBMD(Leonhardt et al., 2020; Löffler et al., 2019; 
Johannnesdottir et al., 2021; Boutin et al., 20210), our 
results show that an analysis of RGL histograms should be  
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Figure 5: Typical stress-strain (-) curve obtained during compression of L3 
human vertebral body. For the definition of symbols, see text. 

 
 
performed and the vBMD/X2 parameter be used to describe 
the mechanical properties of the vertebrae. 

It is worth highlighting two additional advantages of the 
proposed approach. First, the study describes, in fact, a 
reanalysis of previously collected data, that is, 
opportunistic analysis. This confirms the possibility of 
analysing of CT data acquiring to solve other diagnostic 
problems. Second, the values of histogram parameters 
seem to be weakly dependent on the image resolution. The 
tests performed confirmed that the five-fold deterioration 
of image resolution (pixel - 730730 μm2) changes the 
parameter values by less than 2%. However, the problem of 
the image resolution requires additional research using 
clinical CT data. 

Finally, attempts were made to describe the relationship 
between mechanical parameters and clinically available 
quantities using the nonlinear models listed above. Based 
on the values ofR2, ACI, and BCI, it turned out that the use of 
a parabolic model provides the best description of E and 
max. The results of the power and logistic models are 
practically identical to those of the linear model. This is not 
surprising because using the cellular solid model (Gibson, 
2005) the relationships between bone density and 
mechanical parameters are nonlinear. The advantage of the 
description   using   the   parabolic   function   occurs  for  all  

parameters characterizing the density. 
In the case of XC2, for E, the values of R2 are 0.688 and 

0.768 for the linear and parabolic models, while for max 
they are equal to0.836, 0.878. Using vBMD/X2as 
independent variable, similar values of R2 were obtained (E 
= 0.673 and 0.702, max= 0.825, 0.837, respectively). For 
vBMD, R2 values are E = 0.619 and 0.670 while for max= 
0.771 and 0.804. It should be noted that ~ (70-90) % of the 
outcome variables are explained by the parabolic model, 
while for the linear model, the values R2 are ~10% lower.  

However, one should pay attention to the certain 
regularity observed in the processing of the results. That is, 
differences in predictive power between linear and 
parabolic laws are usually small (<10%) because the ranges 
of parameter changes exhibited by vertebral bodies are low 
over 50 years (Tables 1). It is known from mathematics that 
small changes in variable values can be very accurately 
described with linear models. Small differences between 
the results of the parabolic and linear models allow, in our 
opinion, the use of the linear model in clinical practice. 

The studies carried out have several limitations. First, the 
statistics should be larger. We have analysed 50 vertebral 
bodies, but the most interesting results were obtained for 
the group of 18 cases. Increasing the number of subjects 
studied will probably not change the observed relationships 
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that appear to be unambiguous. The next drawback is that 
the examinations were performed in vitro. Therefore, the 
images analysed have provided a better resolution than 
clinical CT images. Although the test performed showed 
that the results of the histogram analysis depended weakly 
on the image resolution, the problem requires further 
studies. Finally, we should also note the limitations 
associated with CT. Problems with dose, equipment 
availability, cost, or lack of reference data (XC2, vBMD/X2) 
should also be considered. 
 
 
Conclusions 
 
In summary, many parameters describing human vertebra 
were tested as predictors of mechanical properties. This 
study describes a new method for predicting FR using the 
parameter extracted from the CT image histogram. In fact, 
the proposed approach offers a description of the 
mechanical parameters through the estimator of the bone 
density. Despite specified above limitations, it seems that 
the proposed parameter (XC2) is potentially interesting for 
in vivo applications. Furthermore, it was found that 
vBMD/X2 provides a better FR estimate than vBMD alone. It 
should also be emphasized that the proposed method can 
be used for any abdominal CT performed for other reasons 
(opportunistic screening). 
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APPENDIXES  
 
Appendix 1 
 
The definitions of mechanical parameters are given in Fig. 5. E, σmax, ԑmax and U/V are elastic modulus, ultimate stress (max = 
Fmax/A: Fmax- maximum load, A – axial cross section area at the narrowest site of the vertebral body), ultimate strain (max = 
L/H: L – failure displacement, H – average height of the vertebral body) and work to fracture (U) divided by the volume of 
the vertebral body (V), respectively. It should be noted that forthe vertebral body, the stress–strain curve exhibits 
nonlinearity at low stress levels, and care must be taken to calculate the parameters in a manner that is standardized across 
samples. 
Assuming that the vertebral body is a cylinder with the volume V = AH, made of a material that meets Hook's law ( = E), 
one can calculate the energy storage in the elastic body:  
 

U =   FdH′
H

0
=   (σ ∙ A)d(ε′H)ε

0 = V ∙  σdε′ε
0  ≈   V

1

2
σmax ∙ εmax 

 
The last approximation is valid since the vertebral body resembles a ceramic material. The maximum stress appears only a 
little into the nonlinear elastic region. Using Hook's law,the following approximation can be used: 
 

ε =  
σ

E
 =  const  →   εmax  ≈   

σmax

E
 

 
which further approximates U/V as: 
 
U

V
 ≈  

1

2
σmaxεmax =  

σmax
2

2E
 

 
The correctness of the approximation used is confirmed by a very strong correlation between U/V and (max)2/2E (r = 0.94, 
p< 0.0001). The relations described above make it possible to limit the description of the mechanical property of a vertebral 
body to two parameters. 
 
 
Appendix 2 
 
In our approach, a patient-specific phantom-less normalization method was applied. The technique uses the patient’s own 
internal tissue (average ROIIS grey level – <GTC>, Figure 1) as normalization material. This makes it possible to replace GLT 
(ROIT, Figure 1) with RGL = GLT/<GLC>. It should be noted that the GL values within ROIT and ROTIS are determined during 
the same CT examination and both regions are close to each other (~cm). Therefore, the influence of all parasitic effects, 
characteristic for CT examination, on GL value is practically identical. The use of RGL is a simple method to limit the influence 
of the operating parameters of the X-ray tube, the radiation hardening effect, the image processing method, etc. 
Assuming that the vertebral body is composed of two phases (organic matrix – 1 and bone material - 2) and using the rule of 
mixture, the following formula may be written: 
 
ρ =  ρ1 ∙ v1 +  

2
∙ v2  = vBMD ≈   C ∙  (XC1 ∙ X1 + XC2 ∙ X2) 

 
where  is density of trabecular bone (vBMD), 1 and 2 are densities of both phases while v1 and v2 are the normalized 
volume fractions (v1 + v2 = 1) and C is constant. The XC1 and XC2parameters are linearly related to organic matrix and bone 
material densities. The X1 and X2 are organic matrix and bone material normalized volume fractions. The parameters SD1 and 
SD2 reflect bone material and organic matrix distributions. 
It should be noted that in the standard approach vBMD is calculated using a calibration curve based on the average RGL 
value (<RGL>). As expected, a very strong vBMD-<RGL> correlation was observed (r = 0.97, p < 0.0001). By performing 
histogram analysis (Figure 2), the contribution of the organic phase (X1) and the mineral phase (X2) is separated and the 
quantities that measure the density of the individual phases (XC1 and XC2) are determined. 
Also, the following approximation can be used: 
 
 



 

 
 
 
 
vBMD

X2

=  C ∙ (XC1 ∙
X1

X2

+  XC2)  ≈  C ∙ XC2 

 
Correctness of the approximation is confirmed by very strong correlation of vBMD/X2 and XC2 (r = 0.90, p < 0.0001). 
 
 
 
 
 
 
 
 


