

Research Paper

A stable transfected cell line expressing sterol carrier protein 2 (SISCP2) from the cutworm, Spodoptera litura

Accepted 15th January, 2019

ABSTRACT

Cholesterol is an important cellular membrane component and a precursor of biosynthesis of ecdysteroids in insects. The lack of cholesterol would retard insect development. However, insects cannot synthesize cholesterol de novo due to lack of two key enzymes in the cholesterol biosynthesis pathway, and as a result there is need for sterols uptake from food by the insects. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol uptake and transport in insect cells and potential drug target for insecticide development. To study the function of SISCP2 and to screen efficient and specific insect growth chemical inhibitors that target at this protein, a stably transfected CHO cell line that expresses Spodoptera *litura* sterol carrier protein 2 (SISCP2) established. Sequencing and restriction enzyme digestion analysis showed that SISCP2 cDNAs was cloned into pcDNA5/FRT vector, which was used to transfect CHO cells, followed by drug resistance selection, Genomic PCR, RT-PCR and Western blot analysis indicated that the SISCP2 gene integrated into the cells and the genome of the CHO mRNA and protein of SISCP2 were correctly expressed in the transfected cells. The positive cell colonies could stably express the protein after twenty-seven (27) generations. The established transfected CHO cell line with stable expression of SISCP2 provide a useful model for high throughput screening for insect growth inhibitors that target SISCP2, as well as, for functional study of SISCP2.

Key words: Sterol carrier protein, cholesterol, stable transfected cell line, insect growth inhibitors, high throughput screening.

Li-Li Zhang¹, Tian-Yao Bai², Xing Wan¹, Hui-Min Deng¹, Li-Ning Liang¹, Si-Chun Zheng¹, Qi-Li Feng¹ and Lin Liu¹*

¹Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. ²Institute for Conservation and Utilization of Agro-bioresource in Dabie Mountains, School of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.

*Corresponding author. E-mail: liul@scnu.edu.cn. Tel: +86 20 8521 0024.

INTRODUCTION

The polyphagous lepidopteran cutworm *Spodoptera litura* is a destructive agricultural insect pest in the tropical and sub-tropical areas, feeding on more than two hundred and ninety (290) species of host plants of ninety (90) families, particularly cruciferous vegetables (Zhang et al., 2010). *S. litura* is one member of the holometabolous class of insects. Molting and metamorphosis are mainly coordinately controlled by ecdysteroids, especially active 20-hydroxyecdysone (20E) and juvenile hormone (JH) (Riddiford et al., 1994). 20E initiates the ecdysis process during the larva-to-larva molting and the larva-to-pupa metamorphosis.

Cholesterol is one of the cellular membrane components

(Lasser and Clayton, 1966) and a precursor of biosynthesis of ecdysteroids in insects (Ritter and Nes, 1981; Borovsky et al., 1986). The lack of cholesterol would retard the development of insects (Guo et al., 2009). However, insects cannot synthesize *de novo* cholesterol and they have to uptake sterols from food they fed on (Gilbert et al., 2002; Zdobnov et al., 2002; Jouni et al., 2002).

Sterol carrier protein (SCP) is one of the proteins that are responsible for cholesterol uptake and transport in insect cells (Gallegos et al., 2001). SCP2 is an important member of the sterol carrier protein family which shares a common SCP2 domain responsible for the uptake of lipids *in vivo* (Gallegos et al., 2001). Insect SCP2 protein is

encodes by SCP2 or SCPx gene which have the same domain architecture as that of vertebrate SCPx, containing both a thiolase domain and an SCP2 domain (Krebs and Lan, 2003; Lan and Wessely, 2004; Takeuchi et al., 2004; Gong et al., 2006; Ko and Puglielli, 2007; Guo et al., 2009). SISCP2 can transport a broad range of steroids and lipids, including cholesterol (Ferdinandusse and Houten, 2006; Atshaves et al., 2007; Vyazunova and Lan, 2008; Zhang et al., 2014). Suppressing the expression and function of this protein can result in inhibition of S. litura growth and development (Guo et al., 2009), therefore any small chemical compounds that inhibit the function of SISCP2 and compete with cholesterol for binding with SISCP2 can be considered as an inhibitor or pesticide. To screen for chemical inhibitors of SISCP2 using high-throughput technology, a stably transfected cell line that expresses SISCP2 is a prerequisite. In this study, a stably transfected CHO cell line that expressed SISCP2 was developed.

MATERIALS AND METHODS

CHO cell culture and determination of the optimal screening concentration of hygromycin

Chinese hamster ovary (CHO) cell_line was provided by the Chinese University of Hong Kong, China. CHO cells were grown in Ham's F-10 medium (Invirogen, Shanghai, China) containing 10% fetal bovine serum (FBS) at 37°C in a CO2 incubator. The cells were treated with 1 ml of 0.25% trypsin-Ethylene Diamine (trypsin-EDTA) Tetraacetic Acid at intervals three generations. The cells in the logarithmic growth phase transferred the 96-well cell culture plates and diluted with hygromycin-free medium to a cell density of 1×10⁴ cells /ml in each well. After 24 h culture, the medium was replaced with fresh Ham's F-10 medium containing 0, 50, 100, 250, 500, 750 and 1000 μg/ml hygromycin, respectively. Cell growth was observed at 12 h intervals until 120 h post primary culture. The cells were then collected and the mortality rate statistically analyzed. At each of the given concentrations, at least three replicates were performed.

Construction of transfection vectors

A SISCP2 cDNA was cloned into pMD18-T vector (TAKARA, Dalian, China) and confirmed by sequencing. The open reading frame of the SISCP2 was subcloned into the pcDNA5/FRT expression vector (provided by the Chinese University of Hong Kong, China) between the Kpn I and Not I sites. The SISCP2 insertion into the recombinant vector pcDNA5/FRT-SISCP2 was confirmed using PCR and restriction endonuclease digestion; the vector was therefater used to transfect CHO cells. GFP gene was cloned into the pcDNA5/FRT expression vector as a control using the same method as the SISCP2.

Transfection of CHO cell lines with pcDNA5/FRT-SISCP2 and pcDNA5/FRT-GFP

Cells to be co-transfected were seeded at 2×10^5 cells/ml in 6-well plates and cultured for 12 h. A mixture of $100~\mu l$ containing $2~\mu g$ pcDNA5/FRT-SISCP2 or pcDNA5/FRT-GFP expression vector and pOG44 vector at a ratio of 9:1, 15 μl of Lipofectin reagents (Invitrogen) in the serum-free Ham's F-10 medium. After cultured for 8 h, the DNA-containing medium was replaced with 2 ml of fresh Ham's F-10 medium containing 10% FBS and incubated at 37° C. After 24 h in culture, the transfected cells were observed for green fluorescence signals and photographed using a laser confocal microscope.

Western blotting and genomic DNA PCR analysis

For Western blotting analysis, CHO cells cultured for 24 h were collected and cracked in lysis buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1.0 mM EDTA, 0.1% SDS, 1% X-100, 1% Sodium-dexycholate, Triton inhibitor cocktail) for 30 min and thereafter collected and centrifuged at 14,000 × g at 4°C for 25 min. 10 2 g of supernatants protein were separated on SDS-PAGE and then transferred to a nitrocellulose membrane. The blots were blocked with 3% BSA in 1× PBS buffer for 2 h at room temperature, and then incubated with the anti-SISCP2 antibody (1: 1,000) at room temperature for 1 h. Goat anti-rabbit IgG (Dingguo Biotechnology, Beijing, China) conjugated with alkaline phosphatase was used as the secondary antibody at a dilution of 1:1,500. Nitroblue tetrazolium and 5-bromo-4chloro -3-indolyl phosphate were used as substrates for color development.

Genomic DNA cells was isolated and SISCP2 was PCR-amplified using the following conditions: 95°C for 2 min, 30 cycles at 95°C for 30 s, 58°C for 30 s, 72°C for 1 min 20 s and final extension at 72°C for 10 min. The SISCP2-specific primers were 5'-GGTACCATGGCCATGTACCGCAAAGGATTCGC-3' (forward) 5'-GCGGCCGCTTACAGTTTGGAGCGGATTGTGTCGand 3' (reverse). The size of the expected PCR product of SISCP2 was 458 bp. The primers for the fusion gene of SISCP2 and zeocin were 5'-GGTACCATGGCCATGTACCGCAAAGGATTCGC-3' (forward) and 5'-GATCGGTGCGGGCCTCTT-3' (reverse). The size of the expected PCR product of SISCP2 and zeocin was 1166 bp.

RESULTS

Development of the preliminary stably transfected cell lines

By using the Trypan Blue staining and colonies scoring, $500\,\mu\text{g/ml}$ of hygromycin was confirmed as the optimal concentration for resistance selection of CHO cells, in which all hygromycin-treated normal cells

100

1st group	2 nd group	3 rd group
20	1.3	0.8
62.8	74.9	81.4
82.4	91.1	94.1
0.96	99.7	98.5
100	100	99.7
100	100	99.7
	20 62.8 82.4 0.96 100	20 1.3 62.8 74.9 82.4 91.1 0.96 99.7 100 100

100

100

Table 1: Mortality rates (%) of normal CHO cells treated with different concentrations of hygromycin.

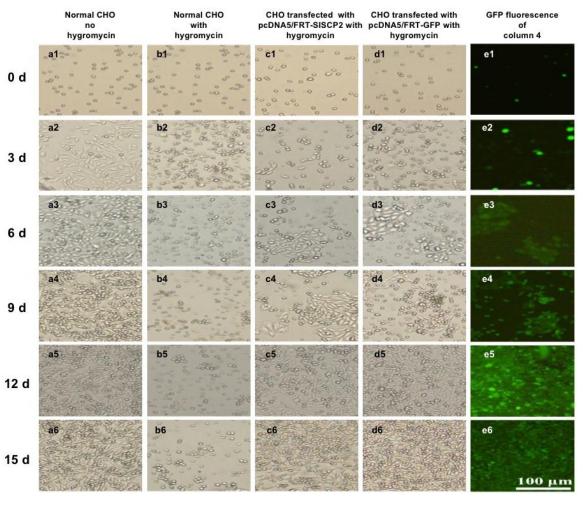
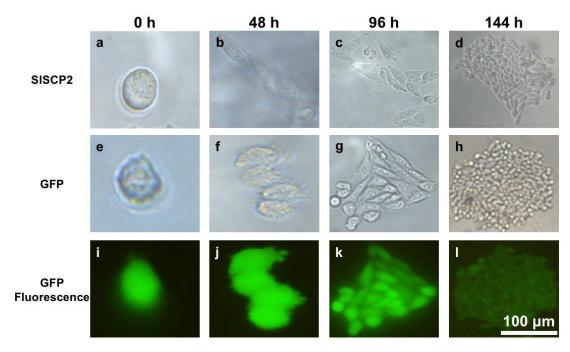
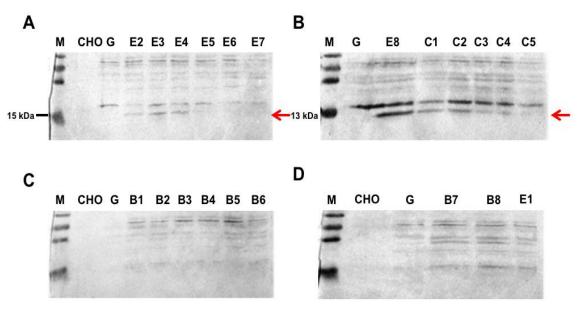



Figure 1: Growth of the normal and transfected CHO cells that were cultured in the medium in the absence or presence of 500 μ g/ml Hygromycin. a1-6: untransfected CHO cells without hygromycin; b1-6: untransfected CHO cells treated with hygromycin as negative control; c1-6: CHO cells transfected with the plasmid pcDNA5/FRT-SISCP2 with hygromycin; d1-6: CHO cells transfected with the plasmid pcDNA5/FRT-GFP with hygromycin as positive control; e1-6: the fluorescence of GFP.


died after 5 days (Table 1). The CHO cell line was transfected with pcDNA5/FRT-SISCP2 and the control vector pcDNA5/FRT-GFP, respectively. Compared with the normal cells (Figures 1a and 2), a large number of the untransfected cells (Figures 1b and 2) and pcDNA5/FRT-SISCP2 (Figure 1c and 2) or pcDNA5/FRT-GFP transfected

1000

cells (Figures 1d and 2) died after three days and floated in the medium when hygromycin was present at 500 μ g/ml (Figure 1). The non-transfected cells started to die in the 6th day and completely died by the 15th day (Figures 1b, 3b and 6). However, the pcDNA5/FRT-SISCP2 or pcDNA5/FRT-GFP transfected cells appeared spindle

Figure 2: The selection of the single colony cells expressing SISCP2. a-d: CHO cell transfected with the plasmid pcDNA5/FRT-SISCP2; e-h: CHO cell transfected with the plasmid pcDNA5/FRT-GFP; i-l: the fluorescence of CHO cell transfected with the plasmid pcDNA5/FRT-GFP.

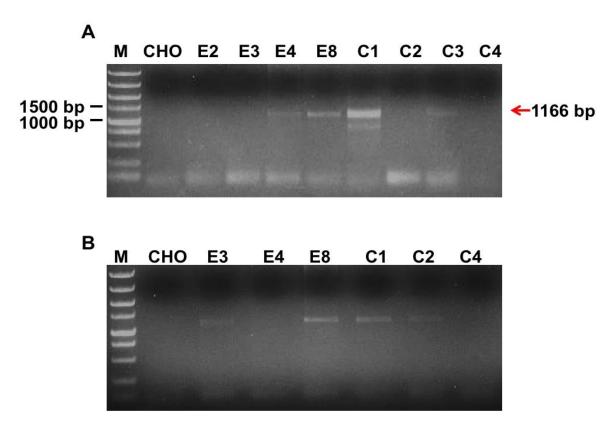


Figure 3: Western blotting analysis of the expression of SISCP2 in the single colony cells after 4 passages in culture. CK: SISCP2 recombinant protein in a bacterial expression system: CHO: The total proteins of CHO cells; G: The total proteins of the GFP expressing cells; B1-8, E1-8 and C1-5: The total proteins of the pcDNA5/FRT-SISCP2 transfected monoclonal cells.

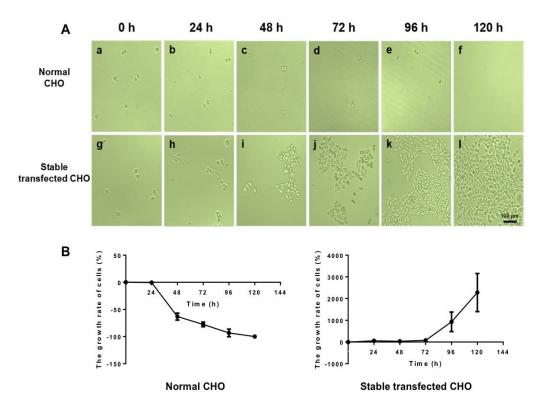
shape and aggregated into cell clusters. These cells continued division and growth and finally covered the whole culture well by the 15th day (Figures 1c, 3c, 6, d3 to d6). The fluorescence of GFP proved that the inserted GFP gene was expressed in the primary transfected cells (Figure 1e1 to e6).

Screening for mono-colonies of SISCP2 and GFP transfected cell lines by density gradient dilution method

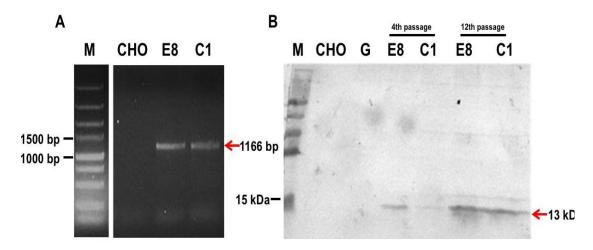
To obtain the mono-colonies of stably transfected cell lines, the preliminary stably transfected cell suspension was

Figure 4: The genomic PCR analysis of the single colony cells after 4 (A) and 8 (B) passages in culture. CHO: The genomic DNA of the non-transfected CHO cells; E2, E3, E4, E8, C1, C2, C3, C4: The genomic DNA of the pcDNA5/FRT-SISCP2 transfected monoclonal cells.

diluted to a concentration of 5 cells/ml. A hundred ul of the cell suspension was seeded per well in 96-well plates. In total, 31 wells that contained only a single cell were selected for subsequent culture and for target gene expression analysis with 21 lines for pcDNA5/FRT-SISCP2 and 10 lines for GFP. These mono-colony cell lines were grown in the culture medium containing 500 µg/ml hygromycin, which was changed every three days. With the prolongation of time, the SISCP2 transfected mono-colonies (Figure and d) the GFP transfected mono-colonies (Figure 2e to h), which displayed green fluorescence (Figure l) continued to grow and divide due to the hygromycin resistance endowed by the resistant gene. These monocolonies cells were cultured from 70 to 80% confluency and then sub-cultured for three passages in the presence of hygromycin before they were used for protein analysis of SISCP2 and GFP expression.


Identification of monocolonal SISCP2 and GFP transfected cell lines by Western blotting and genomic PCR

After four passages in culture, *SISCP2* and *GFP* transfected cells were collected for Western blotting analysis. The


result showed that eight (E2, E3, E4, E8, C1, C2, C3 and C4) out of 21 SISCP2 transfected cell lines expressed 13 kDa SISCP2 protein (Figure 3A and B), while no target protein was detected in the other 13 monocolonal cell lines (Figure 3C and D). Genomic PCR that amplified the of SISCP2 and zeocin showed fusion gene that only E8 and C1 of the eight cell lines had the stable integration of the target gene into the genomic DNA in the cells of both 4th generation (Figure 4A) and 8th generation (Figure 4B).

Stability analysis of stably transfected cell lines

To test whether or not the transferred gene stably stayed in the genome of the cells after high generation of passages in culture, non-transfected cells and the pcDNA5/FRT-SISCP2 stably transfected cells after the 12th generation were treated with 500 $\mu g/ml$ hygromycin and observed every 24 h. The non-transfected cells died and floated (Figure 5A a to f) with a rapid decrease in cell growth rate (Figure 5B right). The pcDNA5/FRT-SISCP2 transfected cells continued to divide and grew (Figure 5A g to l). The growth rate of the stably transfected cell lines increased as a result of the hygromycin-resistance (Figure 5Ba). The results indicated that after 12

Figure 5: Analysis of growth (A) and hygromycin-resistance; (B) of the non-transfected A(a-f) and the pcDNA5/FRT-SISCP2 transfected A(g-l) CHO cells after 12th generations of passages in culture. B left: Analysis of drug-resistance of the non-transfected CHO cells; B right: Analysis of drug-resistance of the plasmid pcDNA5/FRT-SCP2 transfected CHO cells.

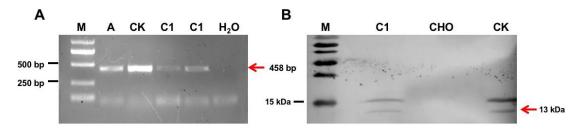


Figure 6: Genomic PCR and Western blotting analysis of the *SISCP2* gene in monocolonal cells after 12 generations in culture. (A) Genomic PCR analysis. CHO: the non-transfected CHO cells; E8 and C1: pcDNA5/FRT-SISCP2 transfected monocolonal cell lines; (B) Western blotting analysis. CK: SISCP2 recombinant protein expressed in a bacterial expression system; CHO: The total proteins of CHO cells; G: The total proteins of the GFP expressing cells; E8 and C1: The total proteins of the pcDNA5/FRT-SISCP2 transfected monocolonal cell lines.

generations, *SISCP2* and the hygromycin genes were still stably integrated into the cell genome.

To detect whether or not the E8 and C1 mono-colony cell lines stably expressed the target protein SISCP2, genomic

PCR and Western blotting were performed and the results showed that the inserted pcDNA5/FRT-SISCP2 could be amplified in the genome of the cells of these two lines (Figure 6A) and the SISCP2 protein was

Figure 7: Genomic PCR and Western blotting analysis of the *SISCP2* gene in monocolonal cell line C1 after 27 generations in culture. (A) PCR analysis. A: cDNA from mid-gut; CK: Bacteria which expressed *SISCP2* gene; C1: gDNA from pcDNA5/FRT-SISCP2 transfected monocolonal cell lines; (B) Western blotting analysis. C1: The total proteins of the pcDNA5/ FRT-SISCP2 transfected monocolonal cell line; CHO: The total proteins of CHO cells; CK: SISCP2 recombinant protein expressed in a bacterial expression system.

stably and highly expressed (Figure 6B) after 12 generations in culture. *SISCP2* gene was amplified after 27 generations and SISCP2 protein detected after 27 generations in culture (Figure 7A) for C1 monocolony cell line (Figure 7B).

DISCUSSION

Hygromycin is an aminoglycoside antibiotic, which can kill eukaryotic cells by inhibiting protein synthesis. The cell lines that are transfected with pcDNA5/FRT vector obtain the hygromycin resistance, whereas the non-transfected cell lines would were killed (Palmer et al., 1987). However, too high concentrations of hygromycin will also kill the positive monocolonal cells. On the other hand, if too low concentrations of hygromycin are used, a large number of false positive cells may survive, resulting in a low screening efficiency of transfected colonies (Bosse et al., 2013). In this study, hygromycin at the 500 $\mu g/ml$ was optimized for screening SISCP2 transfected CHO cell lines that express the hygromycin resistance gene.

Stably transfected cell lines have been applied to study protein function and for high throughput screening of compounds in insects. Human embryonic kidney cell line HEK293 that stably expressed *Lucilia cuprina* acetylcholinesterase was constructed and used for high-throughput screening and identification of new acetylcholinesterase inhibitors (Ilg et al., 2011). In mosquito, *Aedes aegypti*, G Protein-coupled Receptors (GPCRs) protein were stably expressed in the mammalian cell line CHO-K1 used to screen the receptor binding ligands and to identify the key amino acids for ligand binding (Lu et al., 2011).

In this study, a stably transfected CHO cell line that expressed S. litura SISCP2 was developed. The results of genomic **PCR** Western and blotting assay clearly demonstrated that the SISCP2 gene was integrated into the genome of CHO cell lines and stably expressed to protein, even after 27 generations of passages in culture. Out of 21 SISCP2 transfected cell lines selected for genomic RNA and SISCP2 protein analysis, although all of them showed that the gene was integrated into the genome of CHO cells, but only eight lines showed the expression of the SISCP2 protein after four or eight passages in culture. By 12 generations in culture, two lines were found to stably express the protein, while the others seem to have lost the ability of expressing the target protein (Figure 6B). These results suggest that even if a gene was integrated into the genome of CHO cells, it does not guarantee its correct and highly efficient expression into a protein, and sometimes the expression activity of the integrated gene can be lost again. How to maintain the expression activity of an integrated gene in the transfected cells should be further investigated.

The stably transfected cell lines obtained from this study provide a cell model for high-throughput screening insect growth inhibitors that target SISCP2. Because the SISCP2 is responsible for up-taking and transport of cholesterol in S. litura (Guo et al., 2009) and inhibition of the cholesterol binding with SISCP2 would suppress the uptake and transport of cholesterol, resulting in inhibition of the insect growth and development. Thus, any small chemical compounds that compete with cholesterol for binding with SISCP2 are the potential candidates of growth inhibitors. With this SISCP2 transfected cell line, we can develop a cellbased and large scale screening system for chemical inhibitors of insect growth and development. In addition, this transfected CHO cell line can also be used for studying the function of SISCP2, for example, interactions of the protein-protein, protein-membranes and protein-ligands.

ACKNOWLEDGMENTS

This study was supported by grants from the National Natural Science Foundation of China (31501902; 31672494),Key Science Project of and Technology of of Henan Province China (182102110034) and Pearl River S and T Nova Program of Guangzhou (201710010037). The authors are grateful to Prof. Wei Ge of Chinese University of Hong Kong for making available CHO cells and pcDNA5/FRT expression vector for the success of this experiment.

REFERENCES

- Atshaves BP, Gallegos AM, McIntosh AL, Kier AB, Schroeder F (2003). Sterol Carrier Protein-2 Selectively Alters Lipid Composition and Cholesterol Dynamics of Caveolae/Lipid Raft vs Nonraft Domains in L-Cell Fibroblast Plasma Membranes. *Biochem.* 42: 14583-14598.
- Borovsky D, Whisenton LR, Thomas BR, Fuchs MS (1986). Biosynthesis and distribution of ecdysone and 20-hydroxyecdysone in *Aedes aegypti*. Archives of Insect Biochem. Physiol. 3: 19-30.
- Bosse JB, Ragues J, Wodrich H (2013). Fast generation of stable cell lines expressing fluorescent marker molecules to study pathogen induced processes. *Methods in Molecular Biology.* 1064: 153-169.
- Ferdinandusse S, Houten SM (2006). Peroxisomes and bile acid biosynthesis. *Biochimica et Biophysica Acta*, 1763: 1427-1440.
- Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H (2001). Gene structure, intracellular localization, and functional roles of sterol carrier protein- 2. *Progress in Lipid Research*. 40: 498–563.
- Gilbert LI, Rybczynski R, Warren JT (2002). Control and biochemical nature of the ecdysteroidogenic pathway. Ann. Rev. Entomol. 47: 883-916.
- Gong J, Hou Y, Zha XF, Lu C, Zhu Y, Xia QY (2006). Molecular cloning and characterization of *Bombyx mori* sterol carrier protein x/sterol carrier protein 2 (SCPx/SCP2) gene. *DNA sequence: The Journal of DNA Sequencing and Mapping.* 326–333.
- Guo XR, Zheng SC, Liu L, Feng QL (2009). The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of *Spodoptera litura*: gene cloning, expression, localization and functional analyses.BMC Mol. Biol. 10: 102-120.
- Ilg T, Cramer J, Lutz J, Noack S, Schmitt H, Williams H et al (2011). The characterization of *Lucilia cuprina* acetylcholinesterase as a drug target, and the identification of novel inhibitors by high throughput screening. Inse

ct Biochem. Mol. Biol. 41: 470-483.

- Jouni ZE, Zamora J, Wells MA (2002). Absorption and tissue distribution of cholesterol in *Manduca sexta*. Archives of Insect Biochemistry and Physiology. 49: 167-175.
- Ko MH, Puglielli L (2007). The sterol carrier protein SCP-x/Pro-SCP-2 gene has transcriptional activity and regulates the Alzheimer disease gammasecretase. J. Biol. Chem. 282: 19742–19752.
- Krebs KC, Lan Q (2003). Isolation and expression of a sterol carrier protein-2gene from the yellow fever mosquito, Aedes aegypti. Insect Molecular Biology. 12:51-60.
- Lan Q, Wessely V (2004). Expression of a sterol carrier protein-x gene in the yellow fever mosquito, *Aedes aegypti. Insect Molecular Biology*. 13: 519-529.
- Lasser NL, Clayton RB (1996). The intracellular distribution of sterols in *Eurycotis floridana* and its possible relation to subcellular membrane structures. J. Lipid Res. 7: 413-421.
- Lu HL, Kersch CN, Taneja-Bageshwar S, Pietrantonio PV (2011). A calcium bioluminescence assay for functional analysis of mosquito (*Aedes aegypti*) and tick (*Rhipicephalus microplus*) G protein-coupled receptors. J. Visualized Exper. (50): e2732.
- Palmer TD, Hock RA, Osborne WRA, Miller AD (1987). Efficient retrovirusmediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine-deficient human. Proceedings of the National Academy of Sciences of the United States of America. 84: 1055-1059.
- Riddiford LM (1994). Cellular and moleculer action of juvenile hormone. J. Insect Physiol. 24: 214-274.
- Ritter KS, Nes WR (1981). The effects of cholesterol on the development of *Heliothis zea.* J. Insect Physiol. 27: 175-181.
- Takeuchi H, Chen JH, Jenkins JR, Bun-Ya M, Turner PC, Rees HH (2004) Characterization of a sterol carrier protein 2/3-oxoacyl-CoA thiolase from the cotton leafworm (*Spodoptera littoralis*): a lepidopteran mechanism closer to that in mammals than that in dipterans. Biochem. J. 382: 93–100.
- Vyazunova I, Lan Q (2008). Insect sterol carrier protein-2 gene family: structures and functions. Adv. Insect Physiol. Toxicol. Molecular Biol. 37: 173-198.

- Zdobnov EM, Mering CV, Letunic I, Torrents D, Suyama M, Copley RR (2002) Comparative genome and proteome analysis of Anopheles gambiae and Drosphila melanogaster. Science. 298: 149-159.
- Zhang L, Li D, Xu R, Zheng S, He H, Wan J (2014). Structural and functional analyses of a sterol carrier protein in Spodoptera litura. PLoS One, 9: e81542.
- Zhang C, Zhou D, Zheng S, Liu L, Tao S, Yang L (2010). A chymotrypsin-like serine protease cDNA involved in food protein digestion in the common cutworm, Spodoptera litura: Cloning, characterization, developmental and induced expression patterns, and localization. J. Insect Physiol. 56: 788-799.

Cite this article as:

Zhang LL, Tian-Yao B, Xing W, Hui-Min D, Li-Ning L, Si-Chun Z, Qi-Li F, Liu L (2018). A stable transfected cell line expressing sterol carrier protein 2 (SISCP2) from the cutworm, *Spodoptera litura*. J. Biol. Ser. 2(1): 040-047.

Submit your manuscript at http://www.academiapublishing.org/jbs