Journal of Biological Series 1(3): 058-061, July 2018 DOI: 10.15413/jbs.2018.0111

©2018 Academia Publishing

Research Paper

A brief study on *Sclerotinia sclerotiorum*, the cause of post-harvest white mold on some vegetable in Libya

Accepted 17th July, 2018

ABSTRACT

Sclerotinia rot is one of the most devastating postharvest diseases on many crops. Laboratory studies were done to evaluate the mycelial growth and formation of sclerotia on different media and apothecia development of *Sclerotinia sclerotiorum*. Varied in mycelium growth, size and number of sclerotial produced was recorded. Potato sucrose agar was found significantly superior in mycelial growth and sclerotia formation among the other media under study. Germination overwintered sclerotia release of apothecia discs.

Key words: Sclerotinia rot, postharvest disease, morphology, carpogenic germination, Libya.

Zahra Ibrahim El-Gali

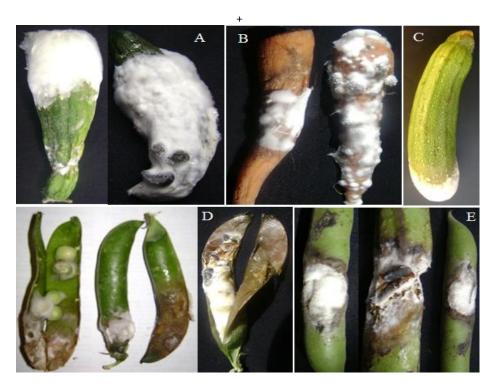
Department of Plant Protection, Faculty Of Agriculture, Omer Al-Mukhtar University, El-Beida, Libya. E-mail: Zahra.lbrahim@omu.edu.ly.

INTRODUCTION

Sclerotinia sclerotiorum are serious pathogens of several important crops in Libya and regularly cause major losses in crops such as cucumber (El-Gali, 2010), pea (Abdel, 2015) and bean (El-Gali, 2018). The soil-borne fungi S. sclerotiorum (Lib.) de Bary has worldwide distribution in temperate and sub-tropical climates and cause significant losses to horticultural and ornamental crops (Agrios, 2005). The genus Sclerotinia produces sclerotia that remain in the soil under adverse climatic conditions for several years (Willetts and Wong, 1980). The sclerotia of S. sclerotiorum germinate by forming abundant mycelium; however, only S. sclerotiorum can germinate carpogenically by producing apothecia which carry on ascospores that represent the main source for newly initiating infection in plant tissues (Mueller et al., 1999; Kim et al., 2014; Sharma et al., 2015). This may provide ecological advantage to this fungus for rapidly colonizing and infecting new hosts. The objective of this study was to identify the causal agent associated with postharvest Sclerotinia rot disease, based on culture characteristics including Mycelium growth (MLG), size and number of sclerotia and carpogenic germination.

MATERIALS AND METHODS

Samples collection and pathogen isolation


Naturally infected vegetable fruits were purchased from local markets in El-Beida city, Libya. Samples were brought to the laboratory in separate sterilized polythene bags, examined critically with respect to symptomatology. The pathogen was isolated, purified from plant samples rotted-infected tissues and activated in potato-dextrose-agar (PDA). The cultures were kept at room temperature (\sim 20°C) in the dark for 15 days for sclerotia production. The fungus that appeared was primarily identified up to species level using cultural and morphological features (Purdy, 1955; Kuhn, 1979).

Growth characteristics at different media

To determine the growth of this fungus at different media, mycelial discs (6.5 mm in diameter) were collected from areas of active growth near the edges of 5-days-old cultures, transferred to Petri dish containing five different media: Potato Sucrose Agar (PSA), Potato Carrot Agar (PCA), Corn Extract Agar (CEA), Malt Extract Agar (MEA) and Sabroud Dextrose Agar (SDA), and incubated at 20°C in the dark for 5 days. Three replicates were prepared. The diameters of colonies on all plates were measured using the criss-cross method (Tao et al., 2011). After 2 and 5 of culture, the colony diameters, number of sclerotia and measured dimensions of sclerotia by Digital Caliper at different media were recorded.

Sclerotia germination

Sclerotia were scraped off the PSA medium, air-dried for 2 to 3 days and surface sterilized by 70% ethanol before being transferred to deep Petri dishes (96 mm × 25 mm) containing

Figure 1: Postharvest white mold on some of vegetables caused by *Sclerotinia sclerotiorum*, (A) Typical symptoms of sclerotinia rot on cucumber, (B) carrot, (C) squash, (D) pea and (E) broad bean

10 ml of sterile water. Sclerotia were incubated for 6 to 8 weeks in the dark at 4°C and 15°C for 4 to 8 weeks. When stipes formed, usually within 4 to 8 weeks, the Petri dishes were transferred to another incubator and illuminated under daylight fluorescent tubes until apothecial discs were formed.

Statistical analysis

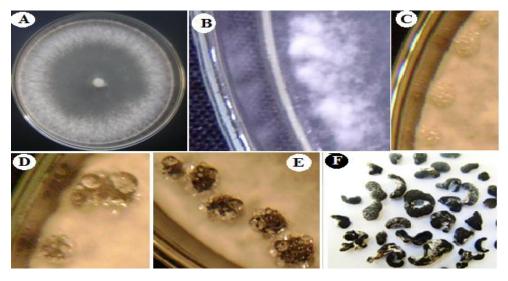
Data were analyzed by ANOVA (Analysis of Variance) using CO-Stat program and mean values were compared using Duncan's LSD multiple range test (P 0.05).

RESULTS

Symptoms on fruits

The signs observed were soaked areas of the infected tissues. Specifically, white and fuzzy mycelial growth was seen on the tissues. The entire fruit surface was rapidly covered with the mycelium, which is easily spread if the fruit handled or exposed to air currents (Figure 1) after 10 days showed small sclerotia that were produced on the infected tissues (at arrow). These sclerotia were black in color and globose, cylindrical, or irregular in shape.

Growth characteristics


After isolation, the fungal culture was purified by adopting

hyphal tip method. Uniformly one type of fungus colony with whitish growth started appearing after 24 h. Thereafter, the growth of fungus was very fast which covered the entire Petri plate within 72 h (Figure 2A). After 5 days of growth, small mycelial tufts started to develop at the periphery of the Petri plates and later such growth covered the entire Petri plate (Figure 2B). Shiny water droplets were seen frequently in culture plates around the mycelial tufts (Figure 2C and D). Thereafter, these mycelial tufts were converted into hard black coloured sclerotia. Individual sclerotium was seen embedded in white mycelium net. Semi-spherical to round or irregular shape sclerotia measured 2 to 10 mm \times 13 to 15 mm in size (Figure 2E and F). Based on the symptoms, cultural and morphological description of the fungus was identified as S. sclerotiorum.

Growth and sclerotia development on different media

To find out a suitable medium for mycelial growth of *S. sclrotiorum*, five different media were tested. Perusal of data (Table 1) revealed that potato sucrose agar medium was significantly superior in supporting maximum mycelial growth (8 cm). This was followed by malt extract agar medium (6.2 cm) and corn extract agar (5.2 cm). Mycelial growth of the fungus was slowly on potato carrot agar and sabroud dextrose agar media.

Concerning the time of sclerotia formation it was faster on PSA medium than the other mediums. It recorded to beginning after 5 days whereas it took 7 to 8 days on other media. Maximum number of sclerotia formation on solid

Figure 2: Macroscopic growth and development of *S. sclerotiorum* sclerotia. A) three days old colony of fungus; B) Development; C) Secretion of a mucilage-like substance; D) Curling of hyphae and formation of localized crystalline structures; E) Crystalline structures and hyphal fusion; F) Maturation of black sclerotia.

Table 1: Effect of solid media on mycelial growth and sclerotia formation of S. sclerotiorum at 25°C.

Medium	Mycelial growth (cm)*		Initiation of Sclerotia	Number of	Dimensions of
	2	5	formation (DAI)	Sclerotia**	Sclerotia (cm)***
PSA	3.7	8	5 _b	18.33a	0.9a
PCA	1	3	8 ^a	12.66ab	0.4bc
CEA	1.6	5.2	7a	2.00c	0.1^{c}
MEA	3.4	6.2	8 ^a	8.33bc	0.6^{b}
SDA	0	3	8a	17.0a	0.5^{b}
LSD at 0.05	Media: 0.24; Day: 0.19; M × D: 0.40				

^{*:} Average of three replication; **: After 10 days; ***: Mean of ten sclerotia; Numbers followed by the same letter(s) are not significantly different at P= 0.05.

media was more on PSA (18.33). Good numbers of sclerotia formation on solid media was more on PSA (18.33) followed by SDA (17) and PCA (12.66). CEA was not suitable for sclerotia formation. A maximum sclerotia dimension (0.9 cm) was recorded on PSA medium.

Sclerotia germination

On carpogenic germination (Figure 3), these sclerotia give rise to 2 to 5 columnar structures (stipes). The exposed portion of stipe was brown coloured. Apothecia were produced after 50 days. Apothecia were cup-shaped with disc concave (at arrow), light yellowish brown in colour and varied from 2 to 10 mm (average being 5 to 6 mm) in diameter. Apothecium is formed on a slender stalk of 20 to 50 mm in length called stipe.

DISCUSSION

The crops after harvesting suffers from a good number of rot

diseases caused by phytopathogenic fungi. Amongst all the rots of vegatables, cottony rot incited by *S. sclerotiorum*, is one of the important diseases and is becoming an obstacle in successful commerce crops. Typical symptoms appeared initially as the watered area. The infected tissues completely covered with white mycelium grew on the plant surface. Isolations were made from infected portions of the plant. The culture of *S. sclerotiorum* was purified and cultural characters, that is, growth of the aerial mycelium and sclerotial production on PSA. El-Gali (2010) also isolated *S. sclerotiorum* on some vegatables.

The fungus was capable of growing on different media, but variation in growth and amount of sclerotial formation was observed on five solid media. It was found that potato sucrose agar medium gave good growth and sclerotial formation of the fungus. Inability of a pathogen to grow and sporulate equally on all media suggests their preference and choice for certain constituents responsible for differences among species and even isolates within species which are inherent and genetic in character (Cochrane, 1958). Several study used PSA culture media because of its simple formulation and ability to support mycelial growth of a wide range of fungi

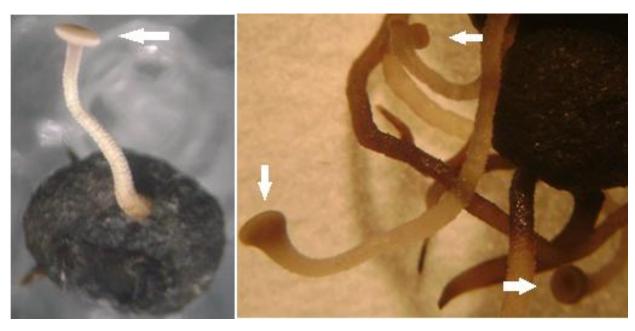


Figure 3: Apothecia formation in vitro.

(Alem et al., 2001; Jeyalakshmi et al., 2001; El-Gali, 2008).

The fungus produced white to gray colonies on PSA medium incubated at 20°C for 5 days, which after 5 days showed small sclerotia that were produced on the peripheries of the plates. These sclerotia were black in color and globose, cylindrical, or irregular in shape.

Overall, the proliferation of vegetative mycelium by *S. sclerotiorum* is the previous fungal stage that initiates the formation of sclerotia and, during this growth period (5 days under our experimental conditions), the mycelium can absorb essential nutrients required by the fungus for further development, as described by Fernando et al. (2004). Thus, structural and reserve components already incorporated into mycelial tissue were subjected to degradation processes mediated by the activity of specific enzymes (for example, arylesterase or acid phosphatase) to provide energy and release of those nutrients required during sclerotia development (Willetts and Bullock, 1992). Nevertheless, it should be borne in mind that the development of sclerotia, as well as, the majority of fungal structures, depends on the growth and incubation conditions.

For sclerotia germination, Apothecia were obtained from germinating sclerotia after 4 to 8 weeks incubation. The results are in conformity with those observed by Kim et al. (2014) that Apothecia were obtained from germinating sclerotia after 5 to 6 weeks of incubation.

The present study of *S. sclerotiorum* provides information on the symptoms cottony rot, morphological characters and initiation of the sclerotia formation that plays a key role in the biological cycle of this important plant pathogen.

REFERENCES

Abdel All AA (2015). Isolation and identification of pods rots fungi in pea and their control with physics methods. M. Sc. Thesis, Omer Al-Mukhtar University, Libya. pp. 83

Agrios GN (2005). Plant pathology, 5th Ed. Elsevier Acad. Press. London. pp. 290.

Alem MS, Begum MF, Sarker MA, Islam MR (2001). Effect of temperature, light and media on growth, sporulation, formation of pigments and pycnidia of *Botyodiplodia theobromae* Pat. Pakistan J. Biol. Sci. 4(10):1224-1227.

Cochrane VW (1958). Physiology of fungi. John Willey and Sons, New York. pp. 524.

El-Gali ZI (2008). A study of strawberry leaf spot in Al-Jabal El-Akhdar area, Libya. Arab. J. Plant. Prot. 26: 160-162.

El-Gali ZI (2010). Cultural, morphological and Physiological studies on some isolates of *Sclerotinia sclerotiorum*. Libyan J. Plant Prot. Res. 1: 11-16.

El-Gali ZI (2018). Evaluation of some plant extracts and powders in control of Bean damping-off by *Sclerotinia sclerotiorum*. Agric. Food Sci. Res. 5(1): 47-51.

Fernando WGD, Nakkeeran S, Zhang Y (2004). Ecofriendly methods in combating *Sclerotinia sclerotiorum* (Lib.) de Bary. Recent Res. Dev. Environ. Biol. 1: 329–347

Jeyalakshmi C, Doraiswamy S, Valluvaparidasan V, Rabindran RH, Evens C, Harvey JO (2001). Effect of substrate media on virulence of *Fusarium pallidoroseum:* a potential bioherbicide for *Parthenium* management. Indian Phytopath. 54(4): 453-456.

Kim JY, Aktaruzzaman MD, Afroz T, Hahm YI, Kim BS (2014). The First Report of Postharvest Stem Rot of Kohlrabi Caused by *Sclerotinia* sclerotiorum in Korea. Mycobiology. 42(4): 409-411

Mueller DS, Hartman GL, Pedersen WL (1999). Development of sclerotia and apothecia of *Sclerotinia sclerotiorum* from infected soybean seed and its control by fungicide seed treatment. Plant Dis. 83: 1113-1115.

Purdy LH (1955). A broader concept of the species *Sclerotinia sclerotiorum* based on variability. Phytopathology. 45: 421–427.

Sharmam P, Meena PD. Verna PR, Saharan, GS, Mehta N, Singh D, Tao Y, Zeng F, Ho H, Wei J, Wu Y, Yang L, He Y (2011). *Pythium vexans* causing stem rot of Dendrobium in Yunnan Province, China. J. Phytopathol. 159(4): 255-259.

Willetts HJ. and Bullock, S. (1992). Developmental biology of sclerotia. Mycol. Res., 96:801–816

Willetts, HJ. and Wong, AL. (1980). The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot. Rev., 46:101–165.