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ABSTRACT 
 
The air handling unit (AHU) is the main component of heating, ventilation and air-
conditioning (HVAC) systems and irregular faults in AHUs are major sources of 
energy consumption. For energy efficient operation of HVAC, this paper aims to 
detect and diagnose three abnormal states in the AHU with the popular deep 
learning model called Deep Belief Network (DBN), where we train it using various 
data generated by Modelica. 
 
Keywords: Fault detection and diagnosis, air-handling unit, deep belief network, 
Modelica. 

 
 
Abbreviations: HVAC: Heating, ventilation and air conditioning; AHU: Air handling unit; FDD: Fault detection and diagnosis; 
DBN: Deep belief network; SAT: Supply air temperature; RAT: Return air temperature; EAT: Exhausted air temperature; 
HIAT: Heat exchanger input air temperature; HOAT: Heat exchanger output air temperature; HOWT: Heat exchanger output 
water temperature; SAP: Supply air fan power; RAP: Return air fan power; SAE: Supply air enthalpy; RAE: Return air 
enthalpy; OAD: Outdoor air damper; EAD: Exhausted air damper; RAD: Return air damper; OADT: Outdoor air dry-bulb 
temperature; OAWT: Outdoor air wet-bulb temperature; IT: Indoor temperature; EAF: Exhausted air flow rate; OAF: Outdoor 
air flow rate; RAF: Return air flow rate; SAF: Supply air flow rate. 
 
 
INTRODUCTION 
 
There has been a consistent significant increase in the 
awareness of the importance of control strategies for 
heating, ventilation, and air conditioning (HVAC) systems in 
the building energy sectors. It is available for use in energy 
more efficient with great qualities of monitored data and 
well-operated control components which are essential for 
achievements of the entire HVAC control systems. Despite its 
benefits, however, energy wastes are still considered the 
main disadvantage with HVAC systems and therefore, the 
development of fault detection and diagnosis (FDD) 
strategies for energy saving in buildings are considered 
crucial. With this, there have been many studies about FDD 
in HVAC systems: Massieh et al. (2012) presented modeling 
and measurement constraints in fault diagnostics for HVAC 
systems Zhimin et al. (2008) developed a wavelet neural 
network-based fault diagnosis in an AHU. The AHU, as one 
of the main components of HVAC systems, is the heat 
exchange station between air and water (Zhimin et al., 

2008). With this, Modelica is used in the AHU for FDD to 
identify and prevent application faults and the difficulties 
they cause.  

Generally, the methods of FDD are divided into three 
different categories which are rules-based, model-based and 
data-driven methods. The rules-based FDD methods are 
achieving with expert knowledge and experience rules 
without any mathematical models (House et al., 2001; 
Schein et al., 2006). Analysis of detection and diagnosis with 
checking rules of expert knowledge and experience is 
accomplished. Contrasting from rules-based methods, model-
based FDD methods are attaining based on systematic 
physical and mathematical models (Salsbury et al., 2001; Yu 
et al., 2002). This method is achieving detection and 
diagnosis of abnormal states with comparing real values 
with data gained from models. Nowadays, data-driven FDD 
method is adopted to apply due to a lot of data made available 
for gaining  from  building  energy management system
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Figure 1: Process of fault detection and diagnosis using machine learning. 

 
 
(BEMS). Data-driven FDD method uses historical data to 
detect and diagnose and include different analysis such as 
neural network (Wang et al., 2002; Lee et al., 2004), wavelet 
analysis (Du et al., 2008) and the statistic methods (Du et al., 
2007; Xiao et al., 2009) etc. 

The aim of this research is to use a deep belief network 
(DBN) which is one of data-driven FDD methods achieving 
detection and diagnosis abnormal states in AHU. Using data-
driven FDD, it is important to appropriately use historical 
data. Therefore, data mining and machine learning are 
proper method to conduct FDD with historical data. The 
normal and abnormal data are gathered from the model 
using Modelica. In this research, proper location and 
number of sensors are important in conducting FDD system 
AHU. It is difficult to apply faults in real system through this 
procedure therefore, Modelica is made use in applications of 
FDD in AHU like as a real system. Considering the data 
gained from the model using Modelica, the machine learning 
framework uses two kinds of data: training data and test data. 
After machine learning, the DBN is used to detect and 
diagnosis specific faults. Figure 1 illustrates the detailed 
process of the entire fault detection and diagnosis procedure. 
 
 
System description 
 
Typical system of AHU and HVAC 
 
Figure 2 shows a typical HVAC system in a building. Here, 
the supply air, the mixture of the outdoor air and recycled 
air exchanges heat and humidity with the chilled water in 
the AHU. The chilled water coming from the chillers is 
delivered by the pumps to the AHU. After being cooled down 

by the chilled water, the supply air is delivered to each air 
conditioning zone by the variable-speed supply fan. 
Moreover, the return air is divided into two streams by the 
variable-speed return fan: one stream is exhaust air to the 
outside of the building and the other is recycled in the next 
air circulation (Zhimin et al., 2014). 

The supply fan speed is regulated based on the duct static 
pressure. The return fan controller tracks the supply fan air 
flow rate reduced by a fixed offset. The duct static pressure 
is adjusted so that at least one VAV damper is 90% open. 
The economizer dampers are modulated to track the set 
point for the mixed air dry bulb temperature. Priority is 
given to maintain a minimum outside air volume flow rate. In 
each zone, the VAV damper is adjusted to meet the room 
temperature set point for cooling, or fully opened during 
heating. The room temperature set point for heating is 
tracked by varying the water flow rate through the reheat 
coil. There is also a finite state machine that transitions the 
mode of operation of the HVAC system among the modes: 
occupied, unoccupied off, unoccupied night set back, 
unoccupied warm-up and unoccupied pre-cool. In the VAV 
model, all air flows are computed based on the duct static 
pressure distribution and the performance curves of the 
fans. Local loop control is implemented using proportional 
and proportional–integral controllers, while the supervisory 
control is implemented using a finite state machine.  

To model the heat transfer through the building envelope, 
a model of five interconnected rooms was used. The five 
room model is representative of one floor of the new 
construction medium office building in Seoul, Korea. There 
are four perimeter zones and one core zone. The thermal 
room model computes transient heat conduction through 
walls, floors, ceilings and long-wave radiative heat exchange
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Figure 2: Typical Heating, Ventilation and Air-conditioning (HVAC) system in a building  

 
 
between surfaces. The convective heat transfer coefficient is 
computed based on the temperature difference between the 
surface and the room air. There is also a layer-by-layer short-
wave radiation, long-wave radiation, and convection and 
conduction heat transfer model for the windows.  

Each thermal zone can have air flow from the HVAC 
system, through leakages of the building envelope (except 
for the core zone) and through bidirectional air exchange 
through open doors that connect adjacent zones. The 
bidirectional air exchange is modeled based on the 
differences in static pressure between adjacent rooms at a 
reference height plus the difference in static pressure across 
the door height as a function of the difference in air density. 
There is also wind pressure acting on each facade. The wind 
pressure is a function of the wind speed and wind direction. 
Therefore, infiltration is a function of the flow imbalance of 
the HVAC system and of the wind conditions (Ashrae, 2006; 
Deru et al., 2009; Modelica Buildings Library; TARCOG, 2006). 
 
 
Modeling of HVAC System with Modelica 
 
Most researches accomplished FDD through simple amounts 
of sensors or regardless of real control logic of HVAC system. 
However, Modelica can make the AHU and HVAC system 
seem like a real system. Modelica Buildings library carried 
out the modeling for the HVAC system of a building (Figure 
2) in its illustration of specific components of the HVAC 
system (Figure 3). 

Aside from the modeling of the entire system, the 
operation logic is also necessary to operate using Modelica. 
As earlier mentioned, this research aims to apply cooling 
operation only. The operation logic of cooling is expressed 
as:  

1) Cooling logic 
- Cooling coil control valve: Proportional integral (PI) 
control is applied to maintain the temperature of supply air 
at 16°C (k: 0.01; Ti: 600 s); 
- Chiller: Set temperature of chilled water at 8°C; 
- Chiller on/off: On: schedule of occupants and temperature 
range of cooling coil inlet at more than 12°C while Off: 
temperature range of cooling coil inlet at less than 8°C; 
- Cooling circulation pump: PI control to remain pressure of 
cooling pipe (k: 0.0005, Ti: 100 s, flow rate: 10 kg/s); 
- Fan for cooling mode: Unoccupied night set back, 
unoccupied pre-cool, safety mode; 
- Fan for cooling on/off: VAV and PI control to maintain 
pressure of indoor area at 410 Pa (k: 0.5; Ti: 15 s). 
 
2) Terminal box logic 
- Terminal unit dampers: PI control of damper proportion 
according to the set temperature of the indoor area (k: 0.1; 
Ti: 120 s). 
 
 
Modelica testing 
 
This research determined specific data of sensors compared 
to typical available sensors to check the accuracy of fault 
detection and diagnosis. Table 1 describes the sensors’ 21 
kinds of data achieved in the research. Determined data of 
sensors are applied through Modelica. Figure 4 shows the 
various but necessary sensors in HVAC with Modelica. 
 
 
Fault characteristics 
 
The FDD system is applied to modern engineering fields to 



Academia Journal of Environmental Science; Lee et al.      111 
 
 
 

 
 

Figure 3: HVAC system accomplished by Modelica 

 
 
 

Table 1: Sensors generated by Modelica. 
 

S/No. Data from sensors 

1 SAT 

2 RAT 

3 EAT 

4 HIAT 

5 HOAT 

6 HIWT 

7 HOWT 

8 SAP 

9 RAP 

10 SAE 

11 RAE 

12 OAD 

13 EAD 

14 RAD 

15 OADT 

16 OAWT 

17 IT 

18 EAF 

19 OAF 

20 RAF 

21 SAF 
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Figure 4: Location of each Sensor in Modelica. 

 
 
detect and diagnose abnormal conditions, faults, or 
malfunctions occurring in the routine operations of a 
system before these situations worsen or lead to additional 
damage to the entire AHU system. In the classification of 
faults, those with sensors and controllers are considered as 
one type only because feedback controllers are normally 
applied to modern engineering systems that mainly 
guarantee stability if the controller gains are suitably 
selected (Yuebin et al., 2014). This research focused on the 
three common faults of supply fans, valves and heat 
exchangers. These faults are related to fans getting stuck, 
leakage of the cooling coil and the low efficiency of the 
coefficient of performance (COP) of each system. Modelica 
was used to change the parameters that are commonly used 
in normal systems. 
 
 
Instances of supply fan getting stuck  
 
The instance of a fan getting stuck is one of the major 
problems in the use of supply fans. When a fan gets stuck, 
flow rates through the fan are decreased. Based on this 
theory, the instance of a fan getting stuck is achieved by 
Modelica by decreasing the flow rates at 60% compared to 
the normal operation of a supply fan. 60% of flow rates in 
the fan assume that flow rates are decreased when the fan 
getting stuck. Figure 5 describes the control of the flow rates 

of a supply fan. 
 
 
Leakage in cooling coil valves 
 
Leakage in cooling coil valves gives rise to an abnormal 
operation state. Modelica language can set the fault of 
leakage in cooling coil valves. The parameter of leakage 
value is represented by “L” and shows how to accomplish 
the change of valve leakage from 0.0001 to 0.1 
((L=Kv(y=0)/Kv(y=1) where “y=0” means fully closed state 
of the valve, “y=1” means fully opened state of the valve. 
Figure 6 describes the possible method to control the 
leakage in a cooling coil valve. 
 
 
Low efficiency of heat exchanger 
 
The heat exchanger of the AHU is located between the 
return fan and supply fan. When the capacity of the heat 
exchanger is lower than that in its normal operation, the 
HVAC system will malfunction. Low thermal conductance 
means that there is low efficiency between the components 
of the heat exchanger. In this logic, the fault of the heat 
exchanger is achieved by Modelica by changing the thermal 
conductance from 30 to 15 kW. Figure 7 describes how the 
thermal conductance of the heat exchanger can be changed. 
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Figure 5: Implementation of supply fan getting stuck with Modelica 

 
 
 

 

 

 
 

Figure 6: Implementation of leakage in cooling coil with Modelica. 
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Figure 7: Implementation of low efficiency of heat exchanger with Modelica. 

 
 
Simulation 
 
A total of 21 kinds of data from sensors and their respective 
simulation with Modelica of normal state and 3 different 
faults states was achieved in 10 days of the summer period. 
Normal states of simulation are calibrated based on the logic 
of operation. With the results of simulation with Modelica, 
this research achieved various results between the normal 
state and the three different faults of the HVAC system. 
Figures 8 to 10 show differences between normal state and 
three different faults. 

However, it is difficult to detect and diagnose various 
faults not just in the application of results of simulation in 
various circumstances. This means that one fault of the 
HVAC system has different effects on the data of sensors 
compared to other faults. Therefore, machine learning 
explains the method on how to deal with wide usage 
involving various fault detection and diagnosis instances. 
 
 
Fault detection and diagnosis 
 
After the application of results with Modelica as the normal 
and abnormal data, the fault detection and diagnosis process 
using machine learning is achieved (Figure 11).  

Data are filtered through the pre-process procedure, 
machine learning with a classifier procedure and fault 
detection and diagnosis accomplished by the post-process 
procedure. 

Pre-processing 
 
“Pre-processing” is a necessary procedure to minimize 
several irregular a number of results from sensors of AHU in 
Modelica due to status of building and environments. First, 
normalization process is an essential process for the 
analysis of data gained by Modelica to standardize irregular 
data which are regardless of times and seasons into regular 
data. Mean and standard deviation values are attained in 
normalization process and these values are normalized to 
distinguish normal from abnormal states. Second, there is a 
need to binarize all data as a result of the structure of a DBN. 
DBN only uses binarized data. The binarized data have great 
effects of accuracy to establish the performance before 
classification (Masmoudi et al., 2013). After normalization, 
most data are shown near the value of zero, assuming low 
frequency when the values are far from zero. In this process, 
the data are quantized and assigned with their respective 
bits to be compressed into either 8 or 10 bits. The research 
assumed that the error rates of 8 and 10 bits are enough to 
conduct the performance appropriately. As a result, 10 bits 
of compressibility have better performance compared to 
others. Therefore, this research applied 10 bits of 
compressibility of data into fault detection and diagnosis.  
 
 
Classifier: Deep belief network 
 
“Classification” is  the  process of  fault  detection  and
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Figure 8: Comparison flow rates of return air between normal and instances of supply fan getting stuck with 
Modelica simulation. 
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Figure 9: Comparison water temperature of heat exchanger outlet between normal and leakage of valve with 
Modelica simulation. 
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Figure 10: Comparison room temperature between normal and heat exchanger with Modelica simulation. 

 
 
 

 
 

Figure 11: Process of FDD. 

 
 
diagnosis when the data of the sensors with Modelica are 
attained. Among the various classification methods such as 
support vector machines (SVM) and k-nearest neighbors (K-
NN) etc. Based on other researches, this research used the 
“deep learning method,” which is one of the most popular 
machine learning methods available. Because there is no 
information on normal or abnormal data of sensors with 
Modelica using a classifier, this research made use of a deep 
belief network (DBN) as a classifier, which uses various data 
to assess whether the data are normal or abnormal. Before 
using the DBN classifier, durations (number of iterations) 
and structures are needed to be determined. Tests are 
repeatedly carried out to attain the appropriate the number 

of iterations and structures of the DBN (Table 3).  
The structures of DBN are attained from 2-layer models to 

change the number of nodes of layers. As in the first row of 
Figure 11, 800/1,600 means that the test conducted 800 
nodes of the first layer and 1,600 nodes of the second layer.  

Also, this research conducted the number of iterations 
that is suitable to achieve optimal values. The results of 300 
and 1000 as the number of iterations are: 800 to 1,600 of 2-
layers and 300 as the number of iterations are appropriate 
to the application of the DBN. In this research, 2-layers are 
enough to accomplish the performance due to short-time 
calculations. Table 2 shows three faults appointed and the 
results of fault detection and diagnosis.  
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Table 2: Results of FDD. 
 

Faults Detection and diagnosis (%) 

Supply fan 81 

Valve 85 

Heat exchanger 99.16 

 

 
Table 3: Results of FDD considering deferral rates. 

 

Faults Detection and diagnosis (%) Deferral rate (%) 

Supply fan 95 11 

Valve 95 31 

Heat exchanger 99.16 0 

 
 
Post-processing 
 
“Post-processing” is the process that increases the rates of 
detection and diagnosis, and this is where the deferral rate is 
set. “Deferral rate” means the instance in which no decision 
is made as the judgment does not ensure whether which is 
normal or abnormal. If there is a deferral rate of 11%, 89% 
of the data are used to determine the test. Table 3 shows the 
results of the detection and diagnosis rates that take the 
deferral rates into consideration. 
 
 
Conclusion 
 
Various researches on fault detection and diagnosis in HVAC 
systemshave been published; however, these studies lack 
inclusion of data on real sensors and disposal of noises. In 
addition, actual application of data measurement of simple 
correlation is difficult despite the use of complicated models 
and methods. To overcome such limitation, this research 
used the machine learning method and verified fault 
detection and diagnosis using specific data with Modelica as 
a real AHU of HVAC system. The accuracy of the results of 
this study’s fault detection and diagnosis was given an 
approximate score of above 95%. With this, it is necessary 
to verify actual data from real buildings for future studies. 
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