Field experiments on reducing pollutants in agricultural-drained water using soil-vegetation buffer strips

Accepted 24th November, 2015

ABSTRACT

Agricultural drainage is one of the leading contributors to agricultural non-point source pollution in China. It is difficult to treat, in practice, due to its dispersed nature. In recent years, although agricultural drainage water has been reused in agricultural production, its poor quality has limited its potential utilization. To optimize its reuse, we designed and tested a treatment system for agricultural-drained water compromising a vegetation buffer, slopes (plant filter), a water collection area, and a soil-retention wall in Hengxi town, Nanjing, Jiangsu Province, China. By exploiting the soil-vegetation buffer strips, nitrogen and phosphorus in the paddy field’s surface drainage are expected to be reduced dramatically. Test results suggest that after applying basal fertilizer, the removal rates of total nitrogen by the soil-vegetation buffer strips are 90.6 and 95.2% for controlled and conventional irrigation-drainage treatments respectively, as well as the removal rates of dissolved nitrogen are 92 and 90.7%. The removal rates of total phosphorus are 94.2 and 92.9%, and for dissolved phosphorus, the rates are 94.4 and 95% respectively. These data indicate that drainage water from the paddy field that has been treated through the constructed system could reach the standard of National Class II with two irrigation-drainage methods, while for control treatments water quality can only reach Class V, which is severely contaminated. With this system, the reuse of agricultural water resources could be achieved, which will undoubtedly provide a great potential for agricultural water management in southern China, as well as achieving an excellent overall ecological benefits.

Key words: Soil-vegetation buffer strips, controlled irrigation-drainage, rainfall, water quality evaluation.

INTRODUCTION

As Chemical fertilizers application increases in the farmland ecosystem, nitrogen and phosphorus losses in the field through surface runoff and seepage are increasing annually, resulting in water eutrophication and ground water contamination (Cao et al., 2006; Cai et al., 2010; Sharpley et al., 2001; Xie et al., 2008). In southern China, rice is the main crop, primarily growing in rainy seasons with frequent rainstorms during the growth period. While farmland drainage occurs, nutrients loss takes place all along. Thus, agricultural drainage is a major contributing factor to agricultural non-point source (AGNPS) pollution, due to the agricultural inputs of nitrogen and phosphorus nutrients, toxic substances, heavy metals and organics from fertilizers or pesticides. Agricultural non-point source pollution is difficult to treat in practice because of its decentralized property (Poe and Schulze, 2009; Wu et al., 2012; Zhu, 2006; Zhu et al., 2008). With respect to paddy fields, the main avenues for fertilizer loss are surface drainage and leakage to groundwater (Chen et al., 2008; Wang, 2010; Wang et al., 2009; Yang et al., 2005; Yu et al., 2009). Therefore, many
researchers are conducting extensive studies that look at the effect of drainage systems on water quality – the transport of agricultural chemicals to surface waters and shallow groundwater aquifers.

Controlled irrigation-drainage technology is a kind of water-saving irrigation technology, which can also reduce non-point source pollution in paddy field through reasonable rainfall utilization, leakage and evaporation regulation and so on (Ding et al., 2006; Peng et al., 2004). A thin water layer is kept in the paddy field surface from transplanting to reviving. The irrigation-drainage time and irrigation-drainage quota are then determined according to soil moisture in the paddy root zone. The upper limit of soil moisture control is the saturated water content, while the lower limit is 60-80% of the saturated water content according to growth stages (Peng et al., 2000; Li et al., 2012). This measurement could result in soil water deficit and change rice physiological and ecological activities, which improves root water, fertilizer, air and heat condition, thus to promote the crop production.

In addition, artificial wetlands and buffer strips are identified as effective measures for non-point pollution control (Koskiha et al., 2003; Liu, 2012; Yu et al., 2010). Because of its crucial role in the retention of nitrogen and phosphorus released in large quantities from agricultural farmland inputs, artificial wetland systems are being utilized for the treatment and buffering of effluent and runoff water in recycling applications (Herbert, 2011; Niko, 2004). Through growing some specific plants that are prone to absorbing pollutants due to their intrinsic properties, the polluted body of water can be treated, while simultaneously the large specific surface areas of, fillers in the artificial wetlands, such as gravel, allows to be effective for pollution removal. These cases are eco-friendly and are widely accepted in agriculture (Han et al., 2012; Paresh and Bil, 2006; Sarah, 2004; Yu et al., 2012).

In this study, we compared the pollution reducing effects of two irrigation-drainage measurements in farmland following with an combination study of the agricultural drainage system and the soil-vegetation buffer strips, a kind of wetland system, in order to optimizing a treatment and reuse system for agricultural drainage water reuse. We demonstrated this system was effective for controlling AGNPS pollution with nitrogen and phosphorus, which has both good ecological benefits and promotion & application values.

MATERIALS AND METHODS

Study area

The experiments were carried out at Vegetables (Flowers) Scientific Institute (latitude 30°38′N～32°13′N, longitude 118°31′E～119°04′E) in Hengxi Town, Nanjing, Jiangsu province, China during the rice growing season, from June to October of 2012 (Figure 1). The experimental site was located in the subtropical humid region, with an average annual rainfall of approximately 1107 mm in the rainy season, starting from the end of June and continuing until the middle of September. However, the average yearly evaporation was around 1473 mm, with 2017 sunshine hours, an average annual temperature of about 15.7°C, 81% maximum average humidity and a wind speed of 19.8 m/s.

The paddy field is not intensively cultivated, usually with only one crop annually. The pre-test analysis showed that the soil was clay loam with a pH of 5.87, a bulk density of 1.35 gcm⁻³, a weight soil moisture content of 28%, organic matter (21.7 gkg⁻¹), hydrolysis nitrogen (86.5 mgkg⁻¹), and available phosphorus (25.3 mgkg⁻¹) at a soil depth of 0–60 cm.

Experimental design

The experiment was designed using the conventional fertilizer mode, combined with two irrigation-drainage techniques, respectively: controlled irrigation-drainage (S1) and conventional irrigation-drainage (S2). Two separate control areas without the treatment of soil-buffer strips (CK1, CK2) were designed for the comparison. Each plot was designed using the random block method with three replications of equal size (2×5×0.3 m). Each of the treatment fields had all of the above-mentioned soil properties. In the experimental plots, PVC pipes (D=0.2 m, D=diameter) were installed for surface drainage, and each plot was irrigated and drained alone. There was also a water meter and a lysimeter (D=0.6 m, D=diameter), and other facilities were set separately as a consequence discharge could be recorded through the water meters. Additionally, a measurement zone (1×1.5×0.8 m) was designed in each plot for observing the ground water level and mixed layer water quality changes. When there was a rain or the cropland needed to drain, water from the surface drainage pipe needed to be sampled for monitoring; otherwise, the mixed water in the measurement zone was sampled. The experimental site map is shown in Figure 1. Experimental field layout is shown in Figure 2.

Soil moisture

Data of soil moisture (water level and soil water content) under two irrigation-drainage modes at different growth stages of paddy rice are shown in Table 1. In control areas, conventional irrigation-drainage managements are carried out. The irrigation and drainage water amount is controlled according to this table.

Cultural practices

Rice (cv. Kaohsiung, Taiwan 139) was chosen for transplantation on June 20, 2012, with a plant density
between 703,500 and 825,000 seedlings per hm². Meanwhile, compound fertilizer (Nutrients contents ≥45%) at a rate of 750 kghm⁻² was applied in the field as the basal fertilizer; with the nitrogen at a rate of 112.5 kghm⁻² and phosphorus at a rate of 249.1 kghm⁻². During the growth period of paddy rice, the two dressing fertilizations were applied at tillering stage and heading-flowering stage. Both of them were urea at the rate of 225 and 105 kghm⁻², respectively. Rice was harvested on October 30, 2012. The pests (paddy rice borer and rice plant hopper) in the rice growth stages were treated by spraying pesticide. All other agricultural practices, such as tillage, plant protection, weeding and worming were maintained the same for all treatments.

Design for soil-vegetation buffer strips

Next to the paddy field, soil-vegetation buffer strips were constructed at the end of the surface drainage pipe, which was about 10 cm lower than the paddy field. This ensured a certain depth of the field surface water layer in the buffer that was favorable for plant growth. Moreover, the water layer depth needed to allow the water to stay for a particular length of time. Inside the buffer strips, baffles were set between the treatments to reduce the potential for interference. In the control area, without buffer strips give rise to that the drained water only stayed in the area and was treated through natural decomposition of pollutants before flowing into the drainage ditch.

The soil-vegetation buffer strips were composed of four parts: a vegetation buffer, slopes (plant filter), a water collection area, and a soil-retention wall. In this soil-vegetation buffer strips, considering the plant's economic value, strong nitrogen and phosphorus absorption capacity, and the rational allocation of emergent vegetation and floating plants, calamus (*Acorus calamus* L.) in the water collection area and arrowhead (*Sagittaria trifolia*) in the vegetation buffer were matched together to remove pollutants. When referring to the slopes, the main function...
Table 1. Controlling Targets of Soil Moisture during Paddy Rice Growth Stages in Two Irrigation Modes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Returning green</th>
<th>Tillering</th>
<th>Jointing-Booting</th>
<th>Heading-Flowering</th>
<th>Milking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Early</td>
<td>Mid-term</td>
<td>Late</td>
<td>Early</td>
</tr>
<tr>
<td>S1</td>
<td>100% (5-25)</td>
<td>70% (0-50)</td>
<td>65% (0-50)</td>
<td>60% (0-0)</td>
<td>80% (0-70)</td>
</tr>
<tr>
<td>S2</td>
<td>100% (30-50)</td>
<td>100% (0-30)</td>
<td>100% (15-30)</td>
<td>60% (0-0)</td>
<td>100% (30-50)</td>
</tr>
</tbody>
</table>

Remarks: (1) The first number is a percentage of the saturated water content of soil. (2) The numbers in parenthesis is a range of the storage depth of surface water in mm in the paddy field.

Figure 3. Side View of the Soil-vegetation Buffer Strips System.

Figure 4. Top View of the Treatment and Reusing System.
Sampling methods

Considering fertilizer applications and rainfall factors, concentrations of nitrogen (total nitrogen and dissolved nitrogen) and phosphorus (total phosphorus and dissolved phosphorus) pollutants from paddy field surface drainage were monitored to study the effect of the soil-vegetation buffer strips system. For the experimental area, sampling sites (1, 2, and 3) are shown in Figure 3, while for the control area, only one site was monitored for comparison.

A Ultra-violet Spectrophotometric Method was used to determine the total nitrogen (TN) and dissolved nitrogen (DN) levels. In addition, the Antimony Molybdenum Spectrophotometry Method was used to determine the total phosphorus (TP) and dissolved phosphorus (DP) levels, according to the “Water and Wastewater Monitoring Analysis Method” (SEPA, 2002a).

Data analysis

Statistical analysis was carried out in SPSS 19.0 software.

RESULTS AND DISCUSSION

Pollutants amount change with two irrigation-drainage treatments

Since paddy field’s surface drainage significantly contributes to agricultural non-point pollution, and the main cause of surface drainage is rainfall, the rainfall amount during the entire rice growth period in 2012 was measured by SM1-1 Type Rainfall Recorder. The water amount of irrigation, drainage and rainfall along with the experimental period are shown in Figure 5.

As described above, after the rain, drainage occurred through the drainage pipe in the paddy field. The discharge was measured by water meter and then converted to water depth over the field. Since the paddy field drainage was a continuous process and pollutant concentration in discharge varied with time, the pollution discharge amount can only be estimated with the average discharge and instant pollutant concentration. We designed two drainage processes to compare the two irrigation-drainage modes. The first one (June.26, 2012) was at the first day after the rain and the pollutant amount was higher at this time due to fertilization vs. the second one (July.21, 2012) was after another rain event and the pollutant amount was lower. It is necessarily to drain for both according to soil moisture controlling targets in Table 1. The estimated pollutant discharges from the paddy field were shown in Table 2.

As summarized in Table 2, the pollutants discharge amount of total nitrogen (TN), dissolved nitrogen (DN), total phosphorus (TP) and dissolved phosphorus (DP) for controlled irrigation-drainage management was a little higher than that for conventional irrigation-drainage management at the beginning, whereas the results were opposite a few days later. It also displayed that the controlled
Table 2. Estimated Pollution Discharge Amount in Each Treatment.

<table>
<thead>
<tr>
<th>Drain Time</th>
<th>Treatment</th>
<th>Discharge (mm)</th>
<th>TN PC</th>
<th>TPD</th>
<th>DN PC</th>
<th>TPD</th>
<th>TP PC</th>
<th>TPD</th>
<th>DP PC</th>
<th>TPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>S1</td>
<td>108</td>
<td>10.6</td>
<td>11.4</td>
<td>6.26</td>
<td>6.8</td>
<td>0.52</td>
<td>0.6</td>
<td>0.36</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>85</td>
<td>12.5</td>
<td>10.6</td>
<td>6.44</td>
<td>5.5</td>
<td>0.56</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>2nd</td>
<td>S1</td>
<td>90</td>
<td>3.6</td>
<td>3.2</td>
<td>2.04</td>
<td>1.8</td>
<td>0.11</td>
<td>0.1</td>
<td>0.113</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>101</td>
<td>4.8</td>
<td>4.8</td>
<td>2.54</td>
<td>2.6</td>
<td>0.20</td>
<td>0.2</td>
<td>0.125</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Remarks: PC is the abbreviation for Pollutant Concentration (mg/l), and TPD is the abbreviation for Total Pollutant Discharge (kg hm⁻²).

irrigation-drainage treatment can reduce the pollution by reducing discharge amount compared to conventional irrigation-drainage management. This was consistent with our previous studies (Li et al., 2013).

Pollutants concentration change through the soil-vegetation buffer strips

Basal fertilizer was applied on June 20, 2012. After that, it rained continuously in the following week, which formed a pollutant transport process that is typical for a rain event. We took the same amount of water sample in different sites for analysis, thus we only studied pollutant concentration changes of the total nitrogen (TN), dissolved nitrogen (DN), total phosphorus (TP) and dissolved phosphorus (DP) in the field’s surface water, obtaining the results shown in Figures 6 to 9.

When there was a heavy rain, and the paddy field water table exceeded the controlling line, field drainage was needed. Water from the drainage pipe would get into the water environment directly through surface drainage. In this
study, the big rain event on June 25, 2012 was used as an example for observing the function of the soil-vegetation buffer strips. Overall, the concentrations of TN, DN, TP and DP decreased across all treatments after the soil-vegetation buffer strips. The pollutant concentrations for all treatments reduced to a lower level in a short amount of time, as compared to the natural decomposition for the control areas (CK).

TN change

As for controlled irrigation-drainage treatment shown in Figure 6a, after the drained water passed the buffer strips, the removal rate of TN reached 90.6%, while for the conventional irrigation-drainage treatment shown in Figure 6b reached 95.2%. It seems that the buffer strips have a better qualification capacity with the conventional irrigation-drainage treatment. As for control area (CK1 and CK2), the removal rates of TN were 52.0 and 56.3%, respectively, which were obviously lower.

Specifically, for sampling site 1, after 10 days, the decreasing rates of TN concentration were 56.6 and 53.6% for S1 and S2, respectively; 62.3 and 65.6% for sampling site 2; and 65.5 and 68.1% for sampling site 3. Apparently, after the soil-retention wall, it decreased sharply compared to after the vegetation buffer and water collection area. This indicated that with the gravel packing and soil layer in the wall, TN could be effectively removed compared to the vegetation effect, because the soil-retention wall could extend the residence time of the polluted water which was favorable for removing nitrogen. Also regarding the soil-retention wall, TN concentrations increased a little on the second day due to the pollutants getting into the waters through the soil-retention wall. However, the concentrations quickly returned to the former level by the next day. Compared with the natural decomposition in control area, the results in sampling site 1 showed that the arrowhead could remove total nitrogen to a certain extent, though it was not as good as the calamus and the gravels.

DN change

As displayed in Figure 7a and b, the decreasing rates of dissolved nitrogen (DN) after the treatments reached 92 and 90.7% for controlled (S1) and conventional (S2) irrigation-drainage management, respectively, while for control areas
(CK1 and CK2), the results were 47.5 and 47.3%.

For three sampling sites, the DN concentration changes were different. In site 1, the decreasing rates for S1 and S2 after 10 days were 67.4 and 63.7%, respectively. In parallel, in site 2, they were 62.0 and 61.9% as well as 67.5 and 70.7% in site 3, respectively. From the results, we observed that the DN concentration decreased more significantly after the soil-retention wall compared to after the vegetation buffer, which suggested that the vegetation in water collection area and the slope can absorb DN less efficiently than the gravel.

Compared with TN’s decreasing trail, the DN concentration decreased faster in the vegetation buffer, which indicated the arrowhead can absorb dissolved nitrogen much more easily than undissolved nitrogen. Then DN concentration decreased a little slow after the vegetation buffer, while the TN decreased faster. That was mainly due to the natural decomposition of undissolved nitrogen in the water collection area. However, DN concentration was decreasing more sharply after the soil-retention wall, which was attributed to the strong absorption ability of the soil layer and gravel on dissolved nitrogen.

TP change

Generally, the removal rates of TP after 10 days were 94.2 and 92.9% for S1 and S2 treatments, respectively, while for control treatments CK1 and CK2, the results were 55.1 and 56.8%, respectively.

As for sampling site 1, the decreasing rates for S1 and S2 were 71.2 and 64.3%, respectively, and for sampling site 2, they were 66.7 and 66.3%. In terms of sampling site 3, they were 66.1 and 66.5%, respectively, which obviously suggest that TP can be removed much more effectively in the vegetation buffer area compared with the TN discussed above mainly due to the strong absorption ability of arrowhead on phosphorus. Further, in this treatment system, the undissolved phosphorus could be settled as sediment in the water collection area through natural decomposition like undissolved nitrogen did. Combining with this factor with the soil-retention wall effect on phosphorus, there was little difference on the TP removal effects between the slopes and soil-retention wall, which could be illustrated from the results obtained above.

Water Quality Evaluation Results of the Buffer Strips

Tables 3 and 4 illustrate the evaluation of water quality classification standards and the relevant grade based on the national standard in China (SEPA, 2002b), which represent that each parameter is graded and given a certain score. The water quality is evaluated with the total score for all items.

The results shown in Table 5 summarized that the water quality of the paddy field drainage through the vegetation buffer and soil-retention wall could reach Class II for both conventional and controlled irrigation-drainage after a rain event, while reaching only Class V in control areas without
the treatment system. All of the treated water drained from the paddy field through the system could be used for irrigation according to the national standard for irrigation quality (SEPA, 1992). What should be noticed was that, this system was the last step before drained water entering the water environment. We can reuse the drained water with nutrients for irrigation without a doubt. The table also implied that agricultural pollution from paddy fields was serious in southern China. Without treatment, the pollutants will contaminate the surface and groundwater environments, resulting in unsafe drinking water issues.

Conclusions

This study constructed soil-vegetation buffer strips for paddy field agricultural drainage water treatment and reuse, which is a method that is promising for reducing non-point pollution from agriculture in southern China. By comparison of controlled irrigation-drainage and conventional irrigation-drainage techniques, we can conclude: there was pollution reducing potential for controlled irrigation-drainage measurement. The experiment results further demonstrated that, exploiting the soil-vegetation buffer strips, nitrogen and phosphorus in the field surface drainage were dramatically reduced for both irrigation-drainage methods, mainly via plant absorption and the system's physical filtration, compared with the natural decomposition in control areas. The total nitrogen and phosphorus decreased, primarily through sediment and vegetation absorption, while dissolved nitrogen and phosphorus levels decreased mainly through the soil and gravel adsorption. With the soil-retention wall, the polluted water could remain in the wall for a longer period of time, allowing enough time for the process of polluted water treatment.

The assessment of the treated water indicated that the drained water from the paddy field was purified, and its quality could reach National Class II for both conventional and controlled irrigation-drainage after a typical rain event, satisfying the national standards for farmland irrigation. With this system, agricultural pollutants could be effectively removed before entering the water environment. Finally, our results suggest a possibility of agricultural water reuse, which represents a meaningful step for agricultural water management in southern China.

Conflicts of Interest

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was funded partly by the Research Project of Special Scientific Funds in Public Service Sectors (Water Conservancy) (201001040, 201301017), partly by Fundamental Research Funds for the Central Universities.
(2014B37714), partly by Water Conservancy Science and Technology Project of Jiangsu Province (201005, 2013073) and partly by the Water Conservancy Sci-tech Popularization with Standardization of Water Resource Ministry (1261121610035).

REFERENCES

Wu MS, Hong L (2012). Design of Virtual Experiment Based on Agricultural Drainage and Nitrate loss. J. Wuhan University. 45(5):305-309.

Cite this article as:

Submit your manuscript at http://www.academiapublishing.org/ajb